
A Handbook of Statistical Analyses Using R
— 2nd Edition

Brian S. Everitt and Torsten Hothorn

CHAPTER 1

An Introduction to R

1.1 What is R?

The R system for statistical computing is an environment for data analysis and
graphics. The root of R is the S language, developed by John Chambers and
colleagues (Becker et al., 1988, Chambers and Hastie, 1992, Chambers, 1998)
at Bell Laboratories (formerly AT&T, now owned by Lucent Technologies)
starting in the 1960ies. The S language was designed and developed as a
programming language for data analysis tasks but in fact it is a full-featured
programming language in its current implementations.

The development of the R system for statistical computing is heavily influ-
enced by the open source idea: The base distribution of R and a large number
of user contributed extensions are available under the terms of the Free Soft-
ware Foundation’s GNU General Public License in source code form. This
licence has two major implications for the data analyst working with R. The
complete source code is available and thus the practitioner can investigate the
details of the implementation of a special method, can make changes and can
distribute modifications to colleagues. As a side-effect, the R system for statis-
tical computing is available to everyone. All scientists, including, in particular,
those working in developing countries, now have access to state-of-the-art tools
for statistical data analysis without additional costs. With the help of the R
system for statistical computing, research really becomes reproducible when
both the data and the results of all data analysis steps reported in a paper are
available to the readers through an R transcript file. R is most widely used for
teaching undergraduate and graduate statistics classes at universities all over
the world because students can freely use the statistical computing tools.

The base distribution of R is maintained by a small group of statisticians,
the R Development Core Team. A huge amount of additional functionality is
implemented in add-on packages authored and maintained by a large group of
volunteers. The main source of information about the R system is the world
wide web with the official home page of the R project being

http://www.R-project.org

All resources are available from this page: the R system itself, a collection of
add-on packages, manuals, documentation and more.

The intention of this chapter is to give a rather informal introduction to
basic concepts and data manipulation techniques for the R novice. Instead
of a rigid treatment of the technical background, the most common tasks

1

http://www.R-project.org

2 AN INTRODUCTION TO R

are illustrated by practical examples and it is our hope that this will enable
readers to get started without too many problems.

1.2 Installing R

The R system for statistical computing consists of two major parts: the base
system and a collection of user contributed add-on packages. The R language is
implemented in the base system. Implementations of statistical and graphical
procedures are separated from the base system and are organised in the form
of packages. A package is a collection of functions, examples and documenta-
tion. The functionality of a package is often focused on a special statistical
methodology. Both the base system and packages are distributed via the Com-
prehensive R Archive Network (CRAN) accessible under

http://CRAN.R-project.org

1.2.1 The Base System and the First Steps

The base system is available in source form and in precompiled form for various
Unix systems, Windows platforms and Mac OS X. For the data analyst, it
is sufficient to download the precompiled binary distribution and install it
locally. Windows users follow the link

http://CRAN.R-project.org/bin/windows/base/release.htm

download the corresponding file (currently named rw4041.exe), execute it
locally and follow the instructions given by the installer.

Depending on the operating system, R can be started either
by typing ‘R’ on the shell (Unix systems) or by clicking on the
R symbol (as shown left) created by the installer (Windows).
R comes without any frills and on start up shows simply a
short introductory message including the version number and
a prompt ‘>’:

R : Copyright 2024 The R Foundation for Statistical Computing
Version 4.4.1 (2024-06-14), ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
>

One can change the appearance of the prompt by

> options(prompt = "R> ")

and we will use the prompt R> for the display of the code examples throughout

http://CRAN.R-project.org
http://CRAN.R-project.org/bin/windows/base/release.htm

INSTALLING R 3

this book. A + sign at the very beginning of a line indicates a continuing
command after a newline.
Essentially, the R system evaluates commands typed on the R prompt and

returns the results of the computations. The end of a command is indicated
by the return key. Virtually all introductory texts on R start with an example
using R as a pocket calculator, and so do we:

R> x <- sqrt(25) + 2

This simple statement asks the R interpreter to calculate
√
25 and then to add

2. The result of the operation is assigned to an R object with variable name x.
The assignment operator <- binds the value of its right hand side to a variable
name on the left hand side. The value of the object x can be inspected simply
by typing

R> x

[1] 7

which, implicitly, calls the print method:

R> print(x)

[1] 7

1.2.2 Packages

The base distribution already comes with some high-priority add-on packages,
namely

KernSmooth MASS Matrix boot
codetools lattice mgcv nlme
nnet rpart survival base
class cluster compiler datasets
foreign grDevices graphics grid
methods parallel spatial splines
stats stats4 tcltk tools
utils NA NA NA

Some of the packages listed here implement standard statistical functionality,
for example linear models, classical tests, a huge collection of high-level plot-
ting functions or tools for survival analysis; many of these will be described
and used in later chapters. Others provide basic infrastructure, for example
for graphic systems, code analysis tools, graphical user-interfaces or other util-
ities.
Packages not included in the base distribution can be installed directly from

the R prompt. At the time of writing this chapter, 21593 user-contributed
packages covering almost all fields of statistical methodology were available.
Certain so-called ‘task views’ for special topics, such as statistics in the social
sciences, environmetrics, robust statistics etc., describe important and helpful
packages and are available from

http://CRAN.R-project.org/web/views/

http://CRAN.R-project.org/web/views/

4 AN INTRODUCTION TO R

Given that an Internet connection is available, a package is installed by
supplying the name of the package to the function install.packages. If,
for example, add-on functionality for robust estimation of covariance matrices
via sandwich estimators is required (for example in Chapter 13), the sandwich
package (Zeileis, 2004) can be downloaded and installed via

R> install.packages("sandwich")

The package functionality is available after attaching the package by

R> library("sandwich")

A comprehensive list of available packages can be obtained from

http://CRAN.R-project.org/web/packages/

Note that on Windows operating systems, precompiled versions of packages
are downloaded and installed. In contrast, packages are compiled locally before
they are installed on Unix systems.

1.3 Help and Documentation

Roughly, three different forms of documentation for the R system for statis-
tical computing may be distinguished: online help that comes with the base
distribution or packages, electronic manuals and publications work in the form
of books etc.
The help system is a collection of manual pages describing each user-visible

function and data set that comes with R. A manual page is shown in a pager
or web browser when the name of the function we would like to get help for
is supplied to the help function

R> help("mean")

or, for short,

R> ?mean

Each manual page consists of a general description, the argument list of the
documented function with a description of each single argument, information
about the return value of the function and, optionally, references, cross-links
and, in most cases, executable examples. The function help.search is helpful
for searching within manual pages. An overview on documented topics in an
add-on package is given, for example for the sandwich package, by

R> help(package = "sandwich")

Often a package comes along with an additional document describing the pack-
age functionality and giving examples. Such a document is called a vignette
(Leisch, 2003, Gentleman, 2005). For example, the sandwich package vignette
is opened using

R> vignette("sandwich", package = "sandwich")

More extensive documentation is available electronically from the collection
of manuals at

http://CRAN.R-project.org/manuals.html

http://CRAN.R-project.org/web/packages/
http://CRAN.R-project.org/manuals.html

DATA OBJECTS IN R 5

For the beginner, at least the first and the second document of the following
four manuals (R Development Core Team, 2009a,b,c,d) are mandatory:

An Introduction to R: A more formal introduction to data analysis with R
than this chapter.

R Data Import/Export: A very useful description of how to read and write
various external data formats.

R Installation and Administration: Hints for installing R on special platforms.

Writing R Extensions: The authoritative source on how to write R programs
and packages.

Both printed and online publications are available, the most important ones
areModern Applied Statistics with S (Venables and Ripley, 2002), Introductory
Statistics with R (Dalgaard, 2002), R Graphics (Murrell, 2005) and the R
Newsletter, freely available from

http://CRAN.R-project.org/doc/Rnews/

In case the electronically available documentation and the answers to fre-
quently asked questions (FAQ), available from

http://CRAN.R-project.org/faqs.html

have been consulted but a problem or question remains unsolved, the r-help
email list is the right place to get answers to well-thought-out questions. It is
helpful to read the posting guide

http://www.R-project.org/posting-guide.html

before starting to ask.

1.4 Data Objects in R

The data handling and manipulation techniques explained in this chapter will
be illustrated by means of a data set of 2000 world leading companies, the
Forbes 2000 list for the year 2004 collected by Forbes Magazine. This list is
originally available from

http://www.forbes.com

and, as an R data object, it is part of the HSAUR2 package (Source: From
Forbes.com, New York, New York, 2004. With permission.). In a first step, we
make the data available for computations within R. The data function searches
for data objects of the specified name ("Forbes2000") in the package specified
via the package argument and, if the search was successful, attaches the data
object to the global environment:

R> data("Forbes2000", package = "HSAUR2")

R> ls()

[1] "x" "Forbes2000"

The output of the ls function lists the names of all objects currently stored in
the global environment, and, as the result of the previous command, a variable

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/faqs.html
http://www.R-project.org/posting-guide.html
http://www.forbes.com

6 AN INTRODUCTION TO R

named Forbes2000 is available for further manipulation. The variable x arises
from the pocket calculator example in Subsection 1.2.1.
As one can imagine, printing a list of 2000 companies via

R> print(Forbes2000)

rank name country category sales
1 1 Citigroup United States Banking 94.7
2 2 General Electric United States Conglomerates 134.2
3 3 American Intl Group United States Insurance 76.7

profits assets marketvalue
1 17.85 1264 255
2 15.59 627 329
3 6.46 648 195

...

will not be particularly helpful in gathering some initial information about
the data; it is more useful to look at a description of their structure found by
using the following command

R> str(Forbes2000)

'data.frame': 2000 obs. of 8 variables:
$ rank : int 1 2 3 4 5 ...
$ name : chr "Citigroup" "General Electric" ...
$ country : Factor w/ 61 levels "Africa","Australia",...
$ category : Factor w/ 27 levels "Aerospace & defense",..
$ sales : num 94.7 134.2 ...
$ profits : num 17.9 15.6 ...
$ assets : num 1264 627 ...
$ marketvalue: num 255 329 ...

The output of the str function tells us that Forbes2000 is an object of class
data.frame, the most important data structure for handling tabular statistical
data in R. As expected, information about 2000 observations, i.e., companies,
are stored in this object. For each observation, the following eight variables
are available:

rank : the ranking of the company,

name : the name of the company,

country : the country the company is situated in,

category : a category describing the products the company produces,

sales : the amount of sales of the company in billion US dollars,

profits : the profit of the company in billion US dollars,

assets : the assets of the company in billion US dollars,

marketvalue : the market value of the company in billion US dollars.

A similar but more detailed description is available from the help page for the
Forbes2000 object:

R> help("Forbes2000")

or

R> ?Forbes2000

DATA OBJECTS IN R 7

All information provided by str can be obtained by specialised functions as
well and we will now have a closer look at the most important of these.
The R language is an object-oriented programming language, so every object

is an instance of a class. The name of the class of an object can be determined
by

R> class(Forbes2000)

[1] "data.frame"

Objects of class data.frame represent data the traditional table-oriented way.
Each row is associated with one single observation and each column corre-
sponds to one variable. The dimensions of such a table can be extracted using
the dim function

R> dim(Forbes2000)

[1] 2000 8

Alternatively, the numbers of rows and columns can be found using

R> nrow(Forbes2000)

[1] 2000

R> ncol(Forbes2000)

[1] 8

The results of both statements show that Forbes2000 has 2000 rows, i.e.,
observations, the companies in our case, with eight variables describing the
observations. The variable names are accessible from

R> names(Forbes2000)

[1] "rank" "name" "country" "category"
[5] "sales" "profits" "assets" "marketvalue"

The values of single variables can be extracted from the Forbes2000 object
by their names, for example the ranking of the companies

R> class(Forbes2000[,"rank"])

[1] "integer"

is stored as an integer variable. Brackets [] always indicate a subset of a larger
object, in our case a single variable extracted from the whole table. Because
data.frames have two dimensions, observations and variables, the comma is
required in order to specify that we want a subset of the second dimension,
i.e., the variables. The rankings for all 2000 companies are represented in a
vector structure the length of which is given by

R> length(Forbes2000[,"rank"])

[1] 2000

A vector is the elementary structure for data handling in R and is a set of
simple elements, all being objects of the same class. For example, a simple
vector of the numbers one to three can be constructed by one of the following
commands

R> 1:3

8 AN INTRODUCTION TO R

[1] 1 2 3

R> c(1,2,3)

[1] 1 2 3

R> seq(from = 1, to = 3, by = 1)

[1] 1 2 3

The unique names of all 2000 companies are stored in a character vector

R> class(Forbes2000[,"name"])

[1] "character"

R> length(Forbes2000[,"name"])

[1] 2000

and the first element of this vector is

R> Forbes2000[,"name"][1]

[1] "Citigroup"

Because the companies are ranked, Citigroup is the world’s largest company
according to the Forbes 2000 list. Further details on vectors and subsetting
are given in Section 1.6.
Nominal measurements are represented by factor variables in R, such as the

category of the company’s business segment

R> class(Forbes2000[,"category"])

[1] "factor"

Objects of class factor and character basically differ in the way their values
are stored internally. Each element of a vector of class character is stored as a
character variable whereas an integer variable indicating the level of a factor
is saved for factor objects. In our case, there are

R> nlevels(Forbes2000[,"category"])

[1] 27

different levels, i.e., business categories, which can be extracted by

R> levels(Forbes2000[,"category"])

[1] "Aerospace & defense"
[2] "Banking"
[3] "Business services & supplies"

...

As a simple summary statistic, the frequencies of the levels of such a factor
variable can be found from

R> table(Forbes2000[,"category"])

Aerospace & defense Banking
19 313

Business services & supplies
70

...

The sales, assets, profits and market value variables are of type numeric,
the natural data type for continuous or discrete measurements, for example

DATA IMPORT AND EXPORT 9

R> class(Forbes2000[,"sales"])

[1] "numeric"

and simple summary statistics such as the mean, median and range can be
found from

R> median(Forbes2000[,"sales"])

[1] 4.37

R> mean(Forbes2000[,"sales"])

[1] 9.7

R> range(Forbes2000[,"sales"])

[1] 0.01 256.33

The summary method can be applied to a numeric vector to give a set of useful
summary statistics, namely the minimum, maximum, mean, median and the
25% and 75% quartiles; for example

R> summary(Forbes2000[,"sales"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 2.0 4.4 9.7 9.5 256.3

1.5 Data Import and Export

In the previous section, the data from the Forbes 2000 list of the world’s largest
companies were loaded into R from the HSAUR2 package but we will now ex-
plore practically more relevant ways to import data into the R system. The
most frequent data formats the data analyst is confronted with are comma sep-
arated files, Excel spreadsheets, files in SPSS format and a variety of SQL data
base engines. Querying data bases is a nontrivial task and requires additional
knowledge about querying languages, and we therefore refer to the R Data
Import/Export manual – see Section 1.3. We assume that a comma separated
file containing the Forbes 2000 list is available as Forbes2000.csv (such a file
is part of the HSAUR2 source package in directory HSAUR2/inst/rawdata).
When the fields are separated by commas and each row begins with a name
(a text format typically created by Excel), we can read in the data as follows
using the read.table function

R> csvForbes2000 <- read.table("Forbes2000.csv",

+ header = TRUE, sep = ",", row.names = 1)

The argument header = TRUE indicates that the entries in the first line of the
text file "Forbes2000.csv" should be interpreted as variable names. Columns
are separated by a comma (sep = ","), users of continental versions of Excel
should take care of the character symbol coding for decimal points (by default
dec = "."). Finally, the first column should be interpreted as row names but
not as a variable (row.names = 1). Alternatively, the function read.csv can
be used to read comma separated files. The function read.table by default
guesses the class of each variable from the specified file. In our case, character
variables are stored as factors

10 AN INTRODUCTION TO R

R> class(csvForbes2000[,"name"])
[1] "character"

which is only suboptimal since the names of the companies are unique. How-
ever, we can supply the types for each variable to the colClasses argument

R> csvForbes2000 <- read.table("Forbes2000.csv",

+ header = TRUE, sep = ",", row.names = 1,

+ colClasses = c("character", "integer", "character",

+ "factor", "factor", "numeric", "numeric", "numeric",

+ "numeric"))

R> class(csvForbes2000[,"name"])
[1] "character"

and check if this object is identical with our previous Forbes 2000 list object

R> all.equal(csvForbes2000, Forbes2000)
[1] "Component \"name\": 23 string mismatches"

The argument colClasses expects a character vector of length equal to the
number of columns in the file. Such a vector can be supplied by the c function
that combines the objects given in the parameter list into a vector

R> classes <- c("character", "integer", "character", "factor",

+ "factor", "numeric", "numeric", "numeric", "numeric")

R> length(classes)
[1] 9

R> class(classes)
[1] "character"

An R interface to the open data base connectivity standard (ODBC) is
available in package RODBC and its functionality can be used to access Excel
and Access files directly:

R> library("RODBC")

R> cnct <- odbcConnectExcel("Forbes2000.xls")

R> sqlQuery(cnct, "select * from \"Forbes2000\\$\"")

The function odbcConnectExcel opens a connection to the specified Excel or
Access file which can be used to send SQL queries to the data base engine and
retrieve the results of the query.
Files in SPSS format are read in a way similar to reading comma separated

files, using the function read.spss from package foreign (which comes with
the base distribution).
Exporting data from R is now rather straightforward. A comma separated

file readable by Excel can be constructed from a data.frame object via

R> write.table(Forbes2000, file = "Forbes2000.csv", sep = ",",

+ col.names = NA)

The function write.csv is one alternative and the functionality implemented
in the RODBC package can be used to write data directly into Excel spread-
sheets as well.
Alternatively, when data should be saved for later processing in R only, R

objects of arbitrary kind can be stored into an external binary file via

BASIC DATA MANIPULATION 11

R> save(Forbes2000, file = "Forbes2000.rda")

where the extension .rda is standard. We can get the file names of all files
with extension .rda from the working directory

R> list.files(pattern = "\\.rda")

[1] "Forbes2000.rda"

and we can load the contents of the file into R by

R> load("Forbes2000.rda")

1.6 Basic Data Manipulation

The examples shown in the previous section have illustrated the importance of
data.frames for storing and handling tabular data in R. Internally, a data.frame
is a list of vectors of a common length n, the number of rows of the table. Each
of those vectors represents the measurements of one variable and we have seen
that we can access such a variable by its name, for example the names of the
companies

R> companies <- Forbes2000[,"name"]

Of course, the companies vector is of class character and of length 2000. A
subset of the elements of the vector companies can be extracted using the []
subset operator. For example, the largest of the 2000 companies listed in the
Forbes 2000 list is

R> companies[1]

[1] "Citigroup"

and the top three companies can be extracted utilising an integer vector of
the numbers one to three:

R> 1:3

[1] 1 2 3

R> companies[1:3]

[1] "Citigroup" "General Electric"
[3] "American Intl Group"

In contrast to indexing with positive integers, negative indexing returns all
elements that are not part of the index vector given in brackets. For example,
all companies except those with numbers four to two-thousand, i.e., the top
three companies, are again

R> companies[-(4:2000)]

[1] "Citigroup" "General Electric"
[3] "American Intl Group"

The complete information about the top three companies can be printed in
a similar way. Because data.frames have a concept of rows and columns, we
need to separate the subsets corresponding to rows and columns by a comma.
The statement

R> Forbes2000[1:3, c("name", "sales", "profits", "assets")]

12 AN INTRODUCTION TO R

name sales profits assets
1 Citigroup 94.7 17.85 1264
2 General Electric 134.2 15.59 627
3 American Intl Group 76.7 6.46 648

extracts the variables name, sales, profits and assets for the three largest
companies. Alternatively, a single variable can be extracted from a data.frame
by

R> companies <- Forbes2000$name

which is equivalent to the previously shown statement

R> companies <- Forbes2000[,"name"]

We might be interested in extracting the largest companies with respect
to an alternative ordering. The three top selling companies can be computed
along the following lines. First, we need to compute the ordering of the com-
panies’ sales

R> order_sales <- order(Forbes2000$sales)

which returns the indices of the ordered elements of the numeric vector sales.
Consequently the three companies with the lowest sales are

R> companies[order_sales[1:3]]
[1] "Custodia Holding" "Central European Media"
[3] "Minara Resources"

The indices of the three top sellers are the elements 1998, 1999 and 2000 of
the integer vector order_sales

R> Forbes2000[order_sales[c(2000, 1999, 1998)],

+ c("name", "sales", "profits", "assets")]
name sales profits assets

10 Wal-Mart Stores 256 9.05 105
5 BP 233 10.27 178
4 ExxonMobil 223 20.96 167

Another way of selecting vector elements is the use of a logical vector being
TRUE when the corresponding element is to be selected and FALSE otherwise.
The companies with assets of more than 1000 billion US dollars are

R> Forbes2000[Forbes2000$assets > 1000,

+ c("name", "sales", "profits", "assets")]
name sales profits assets

1 Citigroup 94.7 17.85 1264
9 Fannie Mae 53.1 6.48 1019
403 Mizuho Financial 24.4 -20.11 1116

where the expression Forbes2000$assets > 1000 indicates a logical vector
of length 2000 with

R> table(Forbes2000$assets > 1000)
FALSE TRUE
1997 3

elements being either FALSE or TRUE. In fact, for some of the companies the
measurement of the profits variable are missing. In R, missing values are
treated by a special symbol, NA, indicating that this measurement is not avail-
able. The observations with profit information missing can be obtained via

COMPUTING WITH DATA 13

R> na_profits <- is.na(Forbes2000$profits)

R> table(na_profits)

na_profits
FALSE TRUE
1995 5

R> Forbes2000[na_profits,

+ c("name", "sales", "profits", "assets")]

name sales profits assets
772 AMP 5.40 NA 42.94
1085 HHG 5.68 NA 51.65
1091 NTL 3.50 NA 10.59
1425 US Airways Group 5.50 NA 8.58
1909 Laidlaw International 4.48 NA 3.98

where the function is.na returns a logical vector being TRUE when the corre-
sponding element of the supplied vector is NA. A more comfortable approach
is available when we want to remove all observations with at least one miss-
ing value from a data.frame object. The function complete.cases takes a
data.frame and returns a logical vector being TRUE when the corresponding
observation does not contain any missing value:

R> table(complete.cases(Forbes2000))

FALSE TRUE
5 1995

Subsetting data.frames driven by logical expressions may induce a lot of
typing which can be avoided. The subset function takes a data.frame as first
argument and a logical expression as second argument. For example, we can
select a subset of the Forbes 2000 list consisting of all companies situated in
the United Kingdom by

R> UKcomp <- subset(Forbes2000, country == "United Kingdom")

R> dim(UKcomp)

[1] 137 8

i.e., 137 of the 2000 companies are from the UK. Note that it is not neces-
sary to extract the variable country from the data.frame Forbes2000 when
formulating the logical expression with subset.

1.7 Computing with Data

1.7.1 Simple Summary Statistics

Two functions are helpful for getting an overview about R objects: str and
summary, where str is more detailed about data types and summary gives a
collection of sensible summary statistics. For example, applying the summary

method to the Forbes2000 data set,

R> summary(Forbes2000)

results in the following output

14 AN INTRODUCTION TO R

rank name country
Min. : 1 Length:2000 United States :751
1st Qu.: 501 Class :character Japan :316
Median :1000 Mode :character United Kingdom:137
Mean :1000 Germany : 65
3rd Qu.:1500 France : 63
Max. :2000 Canada : 56

(Other) :612
category sales

Banking : 313 Min. : 0.0
Diversified financials: 158 1st Qu.: 2.0
Insurance : 112 Median : 4.4
Utilities : 110 Mean : 9.7
Materials : 97 3rd Qu.: 9.5
Oil & gas operations : 90 Max. :256.3
(Other) :1120

profits assets marketvalue
Min. :-25.83 Min. : 0 Min. : 0
1st Qu.: 0.08 1st Qu.: 4 1st Qu.: 3
Median : 0.20 Median : 9 Median : 5
Mean : 0.38 Mean : 34 Mean : 12
3rd Qu.: 0.44 3rd Qu.: 23 3rd Qu.: 11
Max. : 20.96 Max. :1264 Max. :329
NA's :5

From this output we can immediately see that most of the companies are
situated in the US and that most of the companies are working in the banking
sector as well as that negative profits, or losses, up to 26 billion US dollars
occur.
Internally, summary is a so-called generic function with methods for a multi-

tude of classes, i.e., summary can be applied to objects of different classes and
will report sensible results. Here, we supply a data.frame object to summary

where it is natural to apply summary to each of the variables in this data.frame.
Because a data.frame is a list with each variable being an element of that list,
the same effect can be achieved by

R> lapply(Forbes2000, summary)

The members of the apply family help to solve recurring tasks for each
element of a data.frame, matrix, list or for each level of a factor. It might be
interesting to compare the profits in each of the 27 categories. To do so, we
first compute the median profit for each category from

R> mprofits <- tapply(Forbes2000$profits,

+ Forbes2000$category, median, na.rm = TRUE)

a command that should be read as follows. For each level of the factor cat-
egory, determine the corresponding elements of the numeric vector profits
and supply them to the median function with additional argument na.rm =

TRUE. The latter one is necessary because profits contains missing values
which would lead to a non-sensible result of the median function

R> median(Forbes2000$profits)

[1] NA

The three categories with highest median profit are computed from the vector
of sorted median profits

R> rev(sort(mprofits))[1:3]

COMPUTING WITH DATA 15

Oil & gas operations Drugs & biotechnology
0.35 0.35

Household & personal products
0.31

where rev rearranges the vector of median profits sorted from smallest to
largest. Of course, we can replace the median function with mean or whatever
is appropriate in the call to tapply. In our situation, mean is not a good choice,
because the distributions of profits or sales are naturally skewed. Simple graph-
ical tools for the inspection of the empirical distributions are introduced later
on and in Chapter 2.

1.7.2 Customising Analyses

In the preceding sections we have done quite complex analyses on our data
using functions available from R. However, the real power of the system comes
to light when writing our own functions for our own analysis tasks. Although
R is a full-featured programming language, writing small helper functions for
our daily work is not too complicated. We’ll study two example cases.
At first, we want to add a robust measure of variability to the location

measures computed in the previous subsection. In addition to the median
profit, computed via

R> median(Forbes2000$profits, na.rm = TRUE)

[1] 0.2

we want to compute the inter-quartile range, i.e., the difference between
the 3rd and 1st quartile. Although a quick search in the manual pages (via
help("interquartile")) brings function IQR to our attention, we will ap-
proach this task without making use of this tool, but using function quantile

for computing sample quantiles only.
A function in R is nothing but an object, and all objects are created equal.

Thus, we ‘just’ have to assign a function object to a variable. A function
object consists of an argument list, defining arguments and possibly default
values, and a body defining the computations. The body starts and ends with
braces. Of course, the body is assumed to be valid R code. In most cases we
expect a function to return an object, therefore, the body will contain one or
more return statements the arguments of which define the return values.
Returning to our example, we’ll name our function iqr. The iqr function

should operate on numeric vectors, therefore it should have an argument x.
This numeric vector will be passed on to the quantile function for computing
the sample quartiles. The required difference between the 3rd and 1st quartile
can then be computed using diff. The definition of our function reads as
follows

R> iqr <- function(x) {

+ q <- quantile(x, prob = c(0.25, 0.75), names = FALSE)

+ return(diff(q))

+ }

16 AN INTRODUCTION TO R

A simple test on simulated data from a standard normal distribution shows
that our first function actually works, a comparison with the IQR function
shows that the result is correct:

R> xdata <- rnorm(100)

R> iqr(xdata)

[1] 1.5

R> IQR(xdata)

[1] 1.5

However, when the numeric vector contains missing values, our function fails
as the following example shows:

R> xdata[1] <- NA

R> iqr(xdata)

Error in quantile.default(x, prob = c(0.25, 0.75), names = FALSE) :
missing values and NaN's not allowed if 'na.rm' is FALSE

In order to make our little function more flexible it would be helpful to
add all arguments of quantile to the argument list of iqr. The copy-and-
paste approach that first comes to mind is likely to lead to inconsistencies
and errors, for example when the argument list of quantile changes. Instead,
the dot argument, a wildcard for any argument, is more appropriate and we
redefine our function accordingly:

R> iqr <- function(x, ...) {

+ q <- quantile(x, prob = c(0.25, 0.75), names = FALSE,

+ ...)

+ return(diff(q))

+ }

R> iqr(xdata, na.rm = TRUE)

[1] 1.5

R> IQR(xdata, na.rm = TRUE)

[1] 1.5

Now, we can assess the variability of the profits using our new iqr tool:

R> iqr(Forbes2000$profits, na.rm = TRUE)

[1] 0.36

Since there is no difference between functions that have been written by one of
the R developers and user-created functions, we can compute the inter-quartile
range of profits for each of the business categories by using our iqr function
inside a tapply statement;

R> iqr_profits <- tapply(Forbes2000$profits,

+ Forbes2000$category, iqr, na.rm = TRUE)

and extract the categories with the smallest and greatest variability

R> levels(Forbes2000$category)[which.min(iqr_profits)]

[1] "Hotels restaurants & leisure"

COMPUTING WITH DATA 17

R> levels(Forbes2000$category)[which.max(iqr_profits)]

[1] "Drugs & biotechnology"

We observe less variable profits in tourism enterprises compared with profits
in the pharmaceutical industry.
As other members of the apply family, tapply is very helpful when the same

task is to be done more than one time. Moreover, its use is more convenient
compared to the usage of for loops. For the sake of completeness, we will
compute the category-wise inter-quartile range of the profits using a for loop.
Like a function, a for loop consists of a body, i.e., a chain of R commands

to be executed. In addition, we need a set of values and a variable that iterates
over this set. Here, the set we are interested in is the business categories:

R> bcat <- Forbes2000$category

R> iqr_profits2 <- numeric(nlevels(bcat))

R> names(iqr_profits2) <- levels(bcat)

R> for (cat in levels(bcat)) {

+ catprofit <- subset(Forbes2000, category == cat)$profit

+ this_iqr <- iqr(catprofit, na.rm = TRUE)

+ iqr_profits2[levels(bcat) == cat] <- this_iqr

+ }

Compared to the usage of tapply, the above code is rather complicated. At
first, we have to set up a vector for storing the results and assign the appro-
priate names to it. Next, inside the body of the for loop, the iqr function has
to be called on the appropriate subset of all companies of the current business
category cat. The corresponding inter-quartile range must then be assigned
to the correct vector element in the result vector. Luckily, such complicated
constructs will be used in only one of the remaining chapters of the book and
are almost always avoidable in practical data analyses.

1.7.3 Simple Graphics

The degree of skewness of a distribution can be investigated by constructing
histograms using the hist function. (More sophisticated alternatives such as
smooth density estimates will be considered in Chapter 8.) For example, the
code for producing Figure 1.1 first divides the plot region into two equally
spaced rows (the layout function) and then plots the histograms of the raw
market values in the upper part using the hist function. The lower part of
the figure depicts the histogram for the log transformed market values which
appear to be more symmetric.
Bivariate relationships of two continuous variables are usually depicted as

scatterplots. In R, regression relationships are specified by so-called model
formulae which, in a simple bivariate case, may look like

R> fm <- marketvalue ~ sales

R> class(fm)

[1] "formula"

18 AN INTRODUCTION TO R

R> layout(matrix(1:2, nrow = 2))

R> hist(Forbes2000$marketvalue)

R> hist(log(Forbes2000$marketvalue))

Histogram of Forbes2000$marketvalue

Forbes2000$marketvalue

F
re

qu
en

cy

0 50 100 150 200 250 300 350

0
10

00

Histogram of log(Forbes2000$marketvalue)

log(Forbes2000$marketvalue)

F
re

qu
en

cy

−4 −2 0 2 4 6

0
40

0
80

0

Figure 1.1 Histograms of the market value and the logarithm of the market value
for the companies contained in the Forbes 2000 list.

with the dependent variable on the left hand side and the independent variable
on the right hand side. The tilde separates left and right hand sides. Such a
model formula can be passed to a model function (for example to the linear
model function as explained in Chapter 6). The plot generic function imple-
ments a formula method as well. Because the distributions of both market
value and sales are skewed we choose to depict their logarithms. A raw scat-
terplot of 2000 data points (Figure 1.2) is rather uninformative due to areas
with very high density. This problem can be avoided by choosing a transparent
color for the dots as shown in Figure 1.3.

If the independent variable is a factor, a boxplot representation is a natural

COMPUTING WITH DATA 19

R> plot(log(marketvalue) ~ log(sales), data = Forbes2000,

+ pch = ".")

−4 −2 0 2 4

−
4

−
2

0
2

4
6

log(sales)

lo
g(

m
ar

ke
tv

al
ue

)

Figure 1.2 Raw scatterplot of the logarithms of market value and sales.

choice. For four selected countries, the distributions of the logarithms of the
market value may be visually compared in Figure 1.4. Prior to calling the
plot function on our data, we have to remove empty levels from the country
variable, because otherwise the x-axis would show all and not only the selected
countries. This task is most easily performed by subsetting the corresponding
factor with additional argument drop = TRUE. Here, the width of the boxes are
proportional to the square root of the number of companies for each country
and extremely large or small market values are depicted by single points. More
elaborate graphical methods will be discussed in Chapter 2.

20 AN INTRODUCTION TO R

R> plot(log(marketvalue) ~ log(sales), data = Forbes2000,

+ col = rgb(0,0,0,0.1), pch = 16)

Figure 1.3 Scatterplot with transparent shading of points of the logarithms of mar-
ket value and sales.

1.8 Organising an Analysis

Although it is possible to perform an analysis typing all commands directly
on the R prompt it is much more comfortable to maintain a separate text file
collecting all steps necessary to perform a certain data analysis task. Such an
R transcript file, for example called analysis.R created with your favourite
text editor, can be sourced into R using the source command

R> source("analysis.R", echo = TRUE)

When all steps of a data analysis, i.e., data preprocessing, transformations,
simple summary statistics and plots, model building and inference as well
as reporting, are collected in such an R transcript file, the analysis can be

ORGANISING AN ANALYSIS 21

R> tmp <- subset(Forbes2000,

+ country %in% c("United Kingdom", "Germany",

+ "India", "Turkey"))

R> tmp$country <- tmp$country[,drop = TRUE]

R> plot(log(marketvalue) ~ country, data = tmp,

+ ylab = "log(marketvalue)", varwidth = TRUE)

Germany India Turkey United Kingdom

−
2

0
2

4

country

lo
g(

m
ar

ke
tv

al
ue

)

Figure 1.4 Boxplots of the logarithms of the market value for four selected coun-
tries, the width of the boxes is proportional to the square roots of the
number of companies.

22 AN INTRODUCTION TO R

reproduced at any time, maybe with corrected or updated data as it frequently
happens in our consulting practise.

1.9 Summary

Reading data into R is possible in many different ways, including direct con-
nections to data base engines. Tabular data are handled by data.frames in R,
and the usual data manipulation techniques such as sorting, ordering or sub-
setting can be performed by simple R statements. An overview on data stored
in a data.frame is given mainly by two functions: summary and str. Simple
graphics such as histograms and scatterplots can be constructed by applying
the appropriate R functions (hist and plot) and we shall give many more
examples of these functions and those that produce more interesting graphics
in later chapters.

Exercises

Ex. 1.1 Calculate the median profit for the companies in the US and the
median profit for the companies in the UK, France and Germany.

Ex. 1.2 Find all German companies with negative profit.

Ex. 1.3 To which business category do most of the Bermuda island companies
belong?

Ex. 1.4 For the 50 companies in the Forbes data set with the highest profits,
plot sales against assets (or some suitable transformation of each variable),
labelling each point with the appropriate country name which may need
to be abbreviated (using abbreviate) to avoid making the plot look too
‘messy’.

Ex. 1.5 Find the average value of sales for the companies in each country
in the Forbes data set, and find the number of companies in each country
with profits above 5 billion US dollars.

Bibliography

Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988), The New S Lan-
guage, London, UK: Chapman & Hall.

Chambers, J. M. (1998), Programming with Data, New York, USA: Springer-
Verlag.

Chambers, J. M. and Hastie, T. J. (1992), Statistical Models in S , London,
UK: Chapman & Hall.

Dalgaard, P. (2002), Introductory Statistics with R, New York, USA: Springer-
Verlag.

Gentleman, R. (2005), “Reproducible research: A bioinformatics case study,”
Statistical Applications in Genetics and Molecular Biology , 4, URL http:

//www.bepress.com/sagmb/vol4/iss1/art2, Article 2.

Leisch, F. (2003), “Sweave, Part II: Package vignettes,” R News, 3, 21–24,
URL http://CRAN.R-project.org/doc/Rnews/.

Murrell, P. (2005), R Graphics, Boca Raton, Florida, USA: Chapman &
Hall/CRC.

R Development Core Team (2009a), An Introduction to R, R Foundation for
Statistical Computing, Vienna, Austria, URL http://www.R-project.org,
ISBN 3-900051-12-7.

R Development Core Team (2009b), R Data Import/Export , R Foundation for
Statistical Computing, Vienna, Austria, URL http://www.R-project.org,
ISBN 3-900051-10-0.

R Development Core Team (2009c), R Installation and Administration, R
Foundation for Statistical Computing, Vienna, Austria, URL http://www.

R-project.org, ISBN 3-900051-09-7.

R Development Core Team (2009d), Writing R Extensions, R Foundation for
Statistical Computing, Vienna, Austria, URL http://www.R-project.org,
ISBN 3-900051-11-9.

Venables, W. N. and Ripley, B. D. (2002), Modern Applied Statistics with S ,
New York, USA: Springer-Verlag, 4th edition, URL http://www.stats.

ox.ac.uk/pub/MASS4/, ISBN 0-387-95457-0.

Zeileis, A. (2004), “Econometric computing with HC and HAC covariance
matrix estimators,” Journal of Statistical Software, 11, 1–17, URL http:

//www.jstatsoft.org/v11/i10/.

http://www.bepress.com/sagmb/vol4/iss1/art2
http://www.bepress.com/sagmb/vol4/iss1/art2
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.jstatsoft.org/v11/i10/
http://www.jstatsoft.org/v11/i10/

	An Introduction to R
	What is R?
	Installing R
	Help and Documentation
	Data Objects in R
	Data Import and Export
	Basic Data Manipulation
	Computing with Data
	Organising an Analysis
	Summary

