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CHAPTER 6

Simple and Multiple Linear Regression:
How Old is the Universe and Cloud Seeding

6.1 Introduction

? give the relative velocity and the distance of 24 galaxies, according to mea-
surements made using the Hubble Space Telescope – the data are contained
in the gamair package accompanying ?, see Table 6.1. Velocities are assessed
by measuring the Doppler red shift in the spectrum of light observed from the
galaxies concerned, although some correction for <U+2018>local<U+2019>
velocity components is required. Distances are measured using the known re-
lationship between the period of Cepheid variable stars and their luminosity.
How can these data be used to estimate the age of the universe? Here we shall
show how this can be done using simple linear regression.

Table 6.1: hubble data. Distance and velocity for 24 galaxies.

galaxy velocity distance galaxy velocity distance

NGC0300 133 2.00 NGC3621 609 6.64
NGC0925 664 9.16 NGC4321 1433 15.21

NGC1326A 1794 16.14 NGC4414 619 17.70
NGC1365 1594 17.95 NGC4496A 1424 14.86
NGC1425 1473 21.88 NGC4548 1384 16.22
NGC2403 278 3.22 NGC4535 1444 15.78
NGC2541 714 11.22 NGC4536 1423 14.93
NGC2090 882 11.75 NGC4639 1403 21.98
NGC3031 80 3.63 NGC4725 1103 12.36
NGC3198 772 13.80 IC4182 318 4.49
NGC3351 642 10.00 NGC5253 232 3.15
NGC3368 768 10.52 NGC7331 999 14.72

Source: From Freedman W. L., et al., The Astrophysical Journal, 553, 47–72,
2001. With permission.
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4 SIMPLE AND MULTIPLE LINEAR REGRESSION

Table 6.2: clouds data. Cloud seeding experiments in Florida – see
text for explanations of the variables.

seeding time sne cloudcover prewetness echomotion rainfall

no 0 1.75 13.4 0.274 stationary 12.85
yes 1 2.70 37.9 1.267 moving 5.52
yes 3 4.10 3.9 0.198 stationary 6.29
no 4 2.35 5.3 0.526 moving 6.11
yes 6 4.25 7.1 0.250 moving 2.45
no 9 1.60 6.9 0.018 stationary 3.61
no 18 1.30 4.6 0.307 moving 0.47
no 25 3.35 4.9 0.194 moving 4.56
no 27 2.85 12.1 0.751 moving 6.35
yes 28 2.20 5.2 0.084 moving 5.06
yes 29 4.40 4.1 0.236 moving 2.76
yes 32 3.10 2.8 0.214 moving 4.05
no 33 3.95 6.8 0.796 moving 5.74
yes 35 2.90 3.0 0.124 moving 4.84
yes 38 2.05 7.0 0.144 moving 11.86
no 39 4.00 11.3 0.398 moving 4.45
no 53 3.35 4.2 0.237 stationary 3.66
yes 55 3.70 3.3 0.960 moving 4.22
no 56 3.80 2.2 0.230 moving 1.16
yes 59 3.40 6.5 0.142 stationary 5.45
yes 65 3.15 3.1 0.073 moving 2.02
no 68 3.15 2.6 0.136 moving 0.82
yes 82 4.01 8.3 0.123 moving 1.09
no 83 4.65 7.4 0.168 moving 0.28

Weather modification, or cloud seeding, is the treatment of individual clouds
or storm systems with various inorganic and organic materials in the hope of
achieving an increase in rainfall. Introduction of such material into a cloud
that contains supercooled water, that is, liquid water colder than zero degrees
of Celsius, has the aim of inducing freezing, with the consequent ice particles
growing at the expense of liquid droplets and becoming heavy enough to fall
as rain from clouds that otherwise would produce none.
The data shown in Table 6.2 were collected in the summer of 1975 from

an experiment to investigate the use of massive amounts of silver iodide (100
to 1000 grams per cloud) in cloud seeding to increase rainfall (?). In the ex-
periment, which was conducted in an area of Florida, 24 days were judged
suitable for seeding on the basis that a measured suitability criterion, denoted
S-Ne, was not less than 1.5. Here S is the ‘seedability’, the difference between
the maximum height of a cloud if seeded and the same cloud if not seeded
predicted by a suitable cloud model, and Ne is the number of hours between
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1300 and 1600 G.M.T. with 10 centimetre echoes in the target; this quantity
biases the decision for experimentation against naturally rainy days. Conse-
quently, optimal days for seeding are those on which seedability is large and
the natural rainfall early in the day is small.
On suitable days, a decision was taken at random as to whether to seed or

not. For each day the following variables were measured:

seeding : a factor indicating whether seeding action occurred (yes or no),

time : number of days after the first day of the experiment,

cloudcover : the percentage cloud cover in the experimental area, measured
using radar,

prewetness : the total rainfall in the target area one hour before seeding (in
cubic metres ×107),

echomotion : a factor showing whether the radar echo was moving or station-
ary,

rainfall : the amount of rain in cubic metres ×107,

sne : suitability criterion, see above.

The objective in analysing these data is to see how rainfall is related to
the explanatory variables and, in particular, to determine the effectiveness of
seeding. The method to be used is multiple linear regression.

6.2 Simple Linear Regression

6.3 Multiple Linear Regression

6.3.1 Regression Diagnostics

6.4 Analysis Using R

6.4.1 Estimating the Age of the Universe

Prior to applying a simple regression to the data it will be useful to look at a
plot to assess their major features. The R code given in Figure 6.1 produces a
scatterplot of velocity and distance. The diagram shows a clear, strong rela-
tionship between velocity and distance. The next step is to fit a simple linear
regression model to the data, but in this case the nature of the data requires
a model without intercept because if distance is zero so is relative speed. So
the model to be fitted to these data is

velocity = β1distance + ε.

This is essentially what astronomers call Hubble’s Law and β1 is known as
Hubble’s constant; β−1

1 gives an approximate age of the universe.
To fit this model we are estimating β1 using formula (??). Although this

operation is rather easy

R> sum(hubble$distance * hubble$velocity) /

+ sum(hubble$distance^2)
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R> plot(velocity ~ distance, data = hubble)
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Figure 6.1 Scatterplot of velocity and distance.

[1] 76.6

it is more convenient to apply R’s linear modelling function

R> hmod <- lm(velocity ~ distance - 1, data = hubble)

Note that the model formula specifies a model without intercept. We can now
extract the estimated model coefficients via

R> coef(hmod)

distance
76.6

and add this estimated regression line to the scatterplot; the result is shown
in Figure 6.2. In addition, we produce a scatterplot of the residuals yi −
ŷi against fitted values ŷi to assess the quality of the model fit. It seems
that for higher distance values the variance of velocity increases; however, we
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R> layout(matrix(1:2, ncol = 2))

R> plot(velocity ~ distance, data = hubble)

R> abline(hmod)

R> plot(hmod, which = 1)
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Figure 6.2 Scatterplot of velocity and distance with estimated regression line (left)
and plot of residuals against fitted values (right).

are interested in only the estimated parameter β̂1 which remains valid under
variance heterogeneity (in contrast to t-tests and associated p-values).

Now we can use the estimated value of β1 to find an approximate value for
the age of the universe. The Hubble constant itself has units of km× sec−1 ×
Mpc−1. A mega-parsec (Mpc) is 3.09 × 1019km, so we need to divide the es-
timated value of β1 by this amount in order to obtain Hubble<U+2019>s
constant with units of sec−1. The approximate age of the universe in sec-
onds will then be the inverse of this calculation. Carrying out the necessary
computations

R> Mpc <- 3.09 * 10^19

R> ysec <- 60^2 * 24 * 365.25

R> Mpcyear <- Mpc / ysec

R> 1 / (coef(hmod) / Mpcyear)

distance
1.28e+10

gives an estimated age of roughly 12.8 billion years.
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6.4.2 Cloud Seeding

Again, a graphical display highlighting the most important aspects of the data
will be helpful. Here we will construct boxplots of the rainfall in each category
of the dichotomous explanatory variables and scatterplots of rainfall against
each of the continuous explanatory variables.
Both the boxplots (Figure 6.3) and the scatterplots (Figure 6.4) show some

evidence of outliers. The row names of the extreme observations in the clouds
data.frame can be identified via

R> rownames(clouds)[clouds$rainfall %in% c(bxpseeding$out,

+ bxpecho$out)]

[1] "1" "15"

where bxpseeding and bxpecho are variables created by boxplot in Fig-
ure 6.3. Now we shall not remove these observations but bear in mind during
the modelling process that they may cause problems.
In this example it is sensible to assume that the effect of some of the other

explanatory variables is modified by seeding and therefore consider a model
that includes seeding as covariate and, furthermore, allows interaction terms
for seeding with each of the covariates except time. This model can be de-
scribed by the formula

R> clouds_formula <- rainfall ~ seeding +

+ seeding:(sne + cloudcover + prewetness + echomotion) +

+ time

and the design matrix X⋆ can be computed via

R> Xstar <- model.matrix(clouds_formula, data = clouds)

By default, treatment contrasts have been applied to the dummy codings of
the factors seeding and echomotion as can be seen from the inspection of
the contrasts attribute of the model matrix

R> attr(Xstar, "contrasts")

$seeding
[1] "contr.treatment"

$echomotion
[1] "contr.treatment"

The default contrasts can be changed via the contrasts.arg argument to
model.matrix or the contrasts argument to the fitting function, for example
lm or aov as shown in Chapter 5.
However, such internals are hidden and performed by high-level model-

fitting functions such as lm which will be used to fit the linear model defined
by the formula clouds_formula:

R> clouds_lm <- lm(clouds_formula, data = clouds)

R> class(clouds_lm)

[1] "lm"
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R> data("clouds", package = "HSAUR2")

R> layout(matrix(1:2, nrow = 2))

R> bxpseeding <- boxplot(rainfall ~ seeding, data = clouds,

+ ylab = "Rainfall", xlab = "Seeding")

R> bxpecho <- boxplot(rainfall ~ echomotion, data = clouds,

+ ylab = "Rainfall", xlab = "Echo Motion")
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Figure 6.3 Boxplots of rainfall.
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R> layout(matrix(1:4, nrow = 2))

R> plot(rainfall ~ time, data = clouds)

R> plot(rainfall ~ cloudcover, data = clouds)

R> plot(rainfall ~ sne, data = clouds, xlab="S-Ne criterion")

R> plot(rainfall ~ prewetness, data = clouds)
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Figure 6.4 Scatterplots of rainfall against the continuous covariates.

The results of the model fitting is an object of class lm for which a summary

method showing the conventional regression analysis output is available. The
output in Figure 6.5 shows the estimates β̂⋆ with corresponding standard
errors and t-statistics as well as the F -statistic with associated p-value.
Many methods are available for extracting components of the fitted model.

The estimates β̂⋆ can be assessed via

R> betastar <- coef(clouds_lm)

R> betastar

(Intercept)
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R> summary(clouds_lm)

Call:
lm(formula = clouds_formula, data = clouds)

Residuals:
Min 1Q Median 3Q Max

-2.53 -1.15 -0.27 1.04 4.39

Coefficients:
Estimate Std. Error t value

(Intercept) -0.3462 2.7877 -0.12
seedingyes 15.6829 4.4463 3.53
time -0.0450 0.0251 -1.80
seedingno:sne 0.4198 0.8445 0.50
seedingyes:sne -2.7774 0.9284 -2.99
seedingno:cloudcover 0.3879 0.2179 1.78
seedingyes:cloudcover -0.0984 0.1103 -0.89
seedingno:prewetness 4.1083 3.6010 1.14
seedingyes:prewetness 1.5513 2.6929 0.58
seedingno:echomotionstationary 3.1528 1.9325 1.63
seedingyes:echomotionstationary 2.5906 1.8173 1.43

Pr(>|t|)
(Intercept) 0.9031
seedingyes 0.0037
time 0.0959
seedingno:sne 0.6274
seedingyes:sne 0.0104
seedingno:cloudcover 0.0984
seedingyes:cloudcover 0.3885
seedingno:prewetness 0.2745
seedingyes:prewetness 0.5744
seedingno:echomotionstationary 0.1268
seedingyes:echomotionstationary 0.1776

Residual standard error: 2.2 on 13 degrees of freedom
Multiple R-squared: 0.716, Adjusted R-squared: 0.497
F-statistic: 3.27 on 10 and 13 DF, p-value: 0.0243

Figure 6.5 R output of the linear model fit for the clouds data.
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seedingno:echomotionstationary
3.1528

seedingyes:echomotionstationary
2.5906

and the corresponding covariance matrix Cov(β̂⋆) is available from the vcov

method

R> Vbetastar <- vcov(clouds_lm)

where the square roots of the diagonal elements are the standard errors as
shown in Figure 6.5

R> sqrt(diag(Vbetastar))

(Intercept)
2.7877

seedingyes
4.4463

time
0.0251

seedingno:sne
0.8445

seedingyes:sne
0.9284

seedingno:cloudcover
0.2179

seedingyes:cloudcover
0.1103

seedingno:prewetness
3.6010

seedingyes:prewetness
2.6929

seedingno:echomotionstationary
1.9325

seedingyes:echomotionstationary
1.8173

In order to investigate the quality of the model fit, we need access to the
residuals and the fitted values. The residuals can be found by the residuals
method and the fitted values of the response from the fitted (or predict)
method

R> clouds_resid <- residuals(clouds_lm)

R> clouds_fitted <- fitted(clouds_lm)

Now the residuals and the fitted values can be used to construct diagnostic
plots; for example the residual plot in Figure 6.7 where each observation is
labelled by its number (using textplot from package wordclouds). Observa-
tions 1 and 15 give rather large residual values and the data should perhaps
be reanalysed after these two observations are removed. The normal proba-
bility plot of the residuals shown in Figure 6.8 shows a reasonable agreement
between theoretical and sample quantiles, however, observations 1 and 15 are
extreme again.
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R> psymb <- as.numeric(clouds$seeding)

R> plot(rainfall ~ sne, data = clouds, pch = psymb,

+ xlab = "S-Ne criterion")

R> abline(lm(rainfall ~ sne, data = clouds,

+ subset = seeding == "no"))

R> abline(lm(rainfall ~ sne, data = clouds,

+ subset = seeding == "yes"), lty = 2)

R> legend("topright", legend = c("No seeding", "Seeding"),

+ pch = 1:2, lty = 1:2, bty = "n")
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Figure 6.6 Regression relationship between S-Ne criterion and rainfall with and
without seeding.
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R> plot(clouds_fitted, clouds_resid, xlab = "Fitted values",

+ ylab = "Residuals", type = "n",

+ ylim = max(abs(clouds_resid)) * c(-1, 1))

R> abline(h = 0, lty = 2)

R> textplot(clouds_fitted, clouds_resid, words = rownames(clouds), new = FALSE)
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Figure 6.7 Plot of residuals against fitted values for clouds seeding data.

An index plot of the Cook’s distances for each observation (and many other
plots including those constructed above from using the basic functions) can
be found from applying the plot method to the object that results from the
application of the lm function. Figure 6.9 suggests that observations 2 and
18 have undue influence on the estimated regression coefficients, but the two
outliers identified previously do not. Again it may be useful to look at the
results after these two observations have been removed (see Exercise 6.2).
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R> qqnorm(clouds_resid, ylab = "Residuals")

R> qqline(clouds_resid)
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Figure 6.8 Normal probability plot of residuals from cloud seeding model
clouds_lm.
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R> plot(clouds_lm)
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Figure 6.9 Index plot of Cook’s distances for cloud seeding data.
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