A Handbook of Statistical Analyses Using R - 3rd Edition

Torsten Hothorn and Brian S. Everitt

CHAPTER 5

Analysis of Variance: Weight Gain, Foster Feeding in Rats, Water Hardness, and Male Egyptian Skulls

- 5.1 Introduction
- 5.2 Analysis of Variance
- 5.3 Analysis Using R
- 5.3.1 Weight Gain in Rats

Before applying analysis of variance to the data in Table ?? we should try to summarize the main features of the data by calculating means and standard deviations and by producing some hopefully informative graphs. The data is available in the <code>data.frame</code> weightgain. The following R code produces the required summary statistics

To apply analysis of variance to the data we can use the aov function in R and then the summary method to give us the usual analysis of variance table. The model *formula* specifies a two-way layout with interaction terms, where the first factor is source, and the second factor is type.

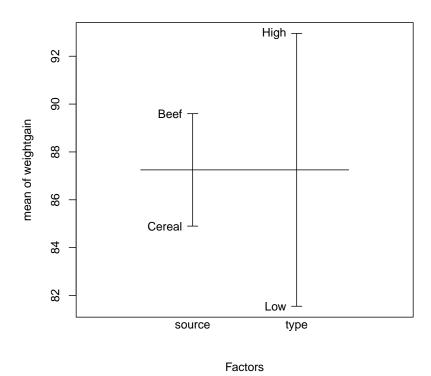
```
R> wg_aov <- aov(weightgain ~ source * type, data = weightgain)</pre>
```

The estimates of the intercept and the main and interaction effects can be extracted from the model fit by

R> coef(wg_aov)

```
(Intercept) sourceCereal typeLow
100.0 -14.1 -20.8
sourceCereal:typeLow
18.8
```

R> plot.design(weightgain)



 $\textbf{Figure 5.1} \quad \text{Plot of mean weight gain for each level of the two factors.}$

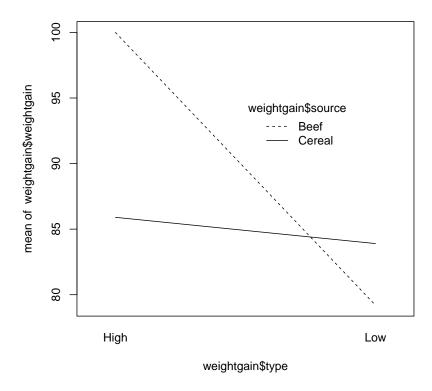
R> summary(wg_aov)					
	Df	Sum Sq	Mean Sq F	value	Pr (>F)
source	1	221	221	0.99	0.327
type	1	1300	1300	5.81	0.021
source:type	1	884	884	3.95	0.054
Residuals	36	8049	224		

Figure 5.2 R output of the ANOVA fit for the weightgain data.

Note that the model was fitted with the restrictions $\gamma_1 = 0$ (corresponding to Beef) and $\beta_1 = 0$ (corresponding to High) because treatment contrasts were used as default as can be seen from

R> options("contrasts")

\$contrasts



 $\textbf{Figure 5.3} \quad \text{Interaction plot of type and source.}$

```
unordered ordered
"contr.treatment" "contr.poly"
```

Thus, the coefficient for source of -14.1 can be interpreted as an estimate of the difference $\gamma_2 - \gamma_1$. Alternatively, we can use the restriction $\sum_i \gamma_i = 0$ by

R> plot.design(foster)

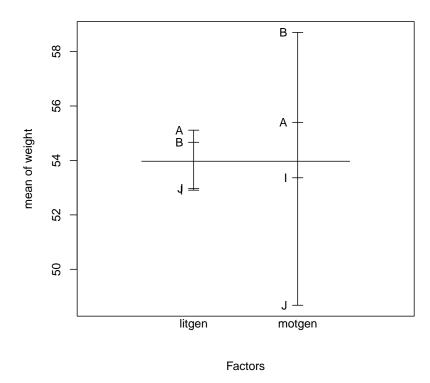


Figure 5.4 Plot of mean litter weight for each level of the two factors for the foster data.

5.3.2 Foster Feeding of Rats of Different Genotype

As in the previous subsection we will begin the analysis of the foster feeding data in Table ?? with a plot of the mean litter weight for the different genotypes of mother and litter (see Figure 5.4). The data are in the *data.frame* foster

```
R> data("foster", package = "HSAUR3")
```

We can derive the two analyses of variance tables for the foster feeding example by applying the ${\sf R}$ code

R> summary(aov(weight $\tilde{\ }$ litgen * motgen, data = foster)) to give

```
Df Sum Sq Mean Sq F value Pr(>F)
litgen 3 60 20.1 0.37 0.7752
```

```
      motgen
      3
      775
      258.4
      4.76 0.0057

      litgen:motgen
      9
      824
      91.6
      1.69 0.1201

      Residuals
      45
      2441
      54.2
```

and then the code

R> summary(aov(weight ~ motgen * litgen, data = foster))
to give

```
Df Sum Sq Mean Sq F value Pr(>F)
motgen
                3
                     772
                            257.2
                                     4.74 0.0059
                3
                      64
                            21.2
                                     0.39 0.7600
litgen
motgen:litgen
               9
                     824
                             91.6
                                     1.69 0.1201
               45
                    2441
                             54.2
Residuals
```

There are (small) differences in the sum of squares for the two main effects and, consequently, in the associated F-tests and p-values. This would not be true if in the previous example in Subsection 5.3.1 we had used the code

```
R> summary(aov(weightgain ~ type * source, data = weightgain)) instead of the code which produced Figure 5.2 (readers should confirm that this is the case).
```

We can investigate the effect of genotype B on litter weight in more detail by the use of multiple comparison procedures (see Everitt, 1996, and Chapter 14). Such procedures allow a comparison of all pairs of levels of a factor whilst maintaining the nominal significance level at its specified value and producing adjusted confidence intervals for mean differences. One such procedure is called Tukey honest significant differences suggested by Tukey (1953); see Hochberg and Tamhane (1987) also. Here, we are interested in simultaneous confidence intervals for the weight differences between all four genotypes of the mother. First, an ANOVA model is fitted

```
R> foster_aov <- aov(weight ~ litgen * motgen, data = foster) which serves as the basis of the multiple comparisons, here with all pair-wise differences by
```

```
R> foster_hsd <- TukeyHSD(foster_aov, "motgen")
R> foster_hsd
```

```
Tukey multiple comparisons of means 95% family-wise confidence level
```

Fit: aov(formula = weight ~ litgen * motgen, data = foster)

\$motgen

```
diff lwr upr p adj

B-A 3.33 -3.86 10.520 0.608

I-A -1.90 -8.84 5.051 0.885

J-A -6.57 -13.63 0.495 0.077

I-B -5.23 -12.42 1.964 0.227

J-B -9.90 -17.20 -2.595 0.004

J-I -4.67 -11.73 2.391 0.304
```

R> plot(foster_hsd)

95% family-wise confidence level

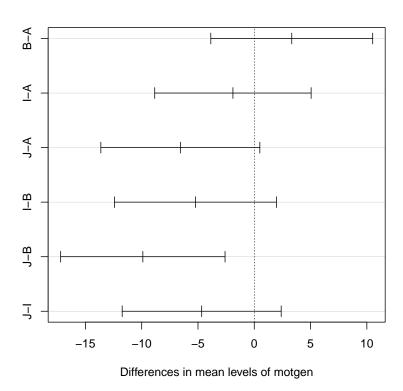


Figure 5.5 Graphical presentation of multiple comparison results for the foster feeding data.

A convenient plot method exists for this object and we can get a graphical representation of the multiple confidence intervals as shown in Figure 5.5. It appears that there is only evidence for a difference in the B and J genotypes. Note that the particular method implemented in TukeyHSD is applicable only to balanced and mildly unbalanced designs (which is the case here). Alternative approaches, applicable to unbalanced designs and more general research questions, will be introduced and discussed in Chapter 14.

5.3.3 Water Hardness and Mortality

The water hardness and mortality data for 61 large towns in England and Wales (see Table 2.3) was analyzed in Chapter 3 and here we will extend the

analysis by an assessment of the differences of both hardness and mortality in the North or South. The hypothesis that the two-dimensional mean-vector of water hardness and mortality is the same for cities in the North and the South can be tested by *Hotelling-Lawley* test in a multivariate analysis of variance framework. The R function manova can be used to fit such a model and the corresponding summary method performs the test specified by the test argument

The cbind statement in the left-hand side of the formula indicates that a multivariate response variable is to be modeled. The p-value associated with the Hotelling-Lawley statistic is very small and there is strong evidence that the mean vectors of the two variables are not the same in the two regions. Looking at the sample means

```
R> tapply(water$hardness, water$location, mean)
```

```
North South 30.4 69.8
```

R> tapply(water\$mortality, water\$location, mean)

```
North South
1634 1377
```

we see large differences in the two regions both in water hardness and mortality, where low mortality is associated with hard water in the South and high mortality with soft water in the North (see Figure ?? also).

5.3.4 Male Egyptian Skulls

cAD150 136 130 93.5 51.4

We can begin by looking at a table of mean values for the four measurements within each of the five epochs. The measurements are available in the data.frame skulls and we can compute the means over all epochs by

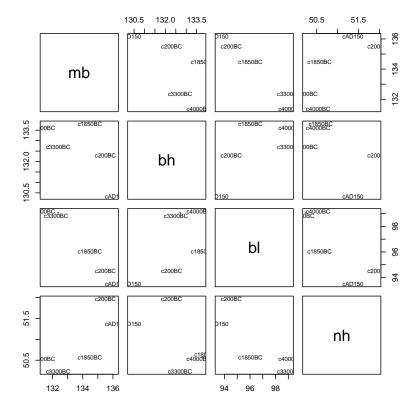


Figure 5.6 Scatterplot matrix of epoch means for Egyptian skulls data.

It may also be useful to look at these means graphically and this could be done in a variety of ways. Here we construct a scatterplot matrix of the means using the code attached to Figure 5.6.

There appear to be quite large differences between the epoch means, at least on some of the four measurements. We can now test for a difference more formally by using MANOVA with the following R code to apply each of the four possible test criteria mentioned earlier;

```
R> skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch,
```

```
data = skulls)
R> summary(skulls_manova, test = "Pillai")
           Df Pillai approx F num Df den Df Pr(>F)
epoch
            4 0.353
                        3.51
                                16
                                     580 4.7e-06
Residuals 145
R> summary(skulls_manova, test = "Wilks")
           Df Wilks approx F num Df den Df Pr(>F)
epoch
           4 0.664
                      3.9
                             16 434 7e-07
Residuals 145
R> summary(skulls_manova, test = "Hotelling-Lawley")
           Df Hotelling-Lawley approx F num Df den Df Pr(>F)
                                  4.23
                                        16 562 8.3e-08
           4
                        0.482
epoch
Residuals 145
R> summary(skulls_manova, test = "Roy")
                Roy approx F num Df den Df Pr(>F)
epoch
            4 0.425
                       15.4
                                 4
                                      145 1.6e-10
Residuals 145
```

The p-value associated with each four test criteria is very small and there is strong evidence that the skull measurements differ between the five epochs. We might now move on to investigate which epochs differ and on which variables. We can look at the univariate F-tests for each of the four variables by using the code

R> summary.aov(skulls_manova)

```
Response mb :
             Df Sum Sq Mean Sq F value Pr(>F)
                   503
                         125.7
                                  5.95 0.00018
epoch
              4
Residuals
            145
                  3061
                          21.1
 Response bh :
             Df Sum Sq Mean Sq F value Pr(>F)
                          57.5
                                  2.45 0.049
epoch
              4
                   230
                  3405
Residuals
            145
                          23.5
 Response bl :
             Df Sum Sq Mean Sq F value Pr(>F)
                         200.8
                                  8.31 4.6e-06
epoch
              4
                   803
            145
                  3506
                          24.2
Residuals
 Response nh :
             Df Sum Sq Mean Sq F value Pr(>F)
                        15.3
                                  1.51
epoch
              4
                   61
            145
                  1472
                          10.2
Residuals
```

We see that the results for the maximum breadths (mb) and basialive olar length (bl) are highly significant, with those for the other two variables, in particular

for nasal heights (nh), suggesting little evidence of a difference. To look at the pairwise multivariate tests (any of the four test criteria are equivalent in the case of a one-way layout with two levels only) we can use the summary method and manova function as follows:

```
R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
                  subset = epoch %in% c("c4000BC", "c3300BC")))
          Df Pillai approx F num Df den Df Pr(>F)
           1 0.0277
                                         55
                        0.391
                                   4
epoch
Residuals 58
R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
                  subset = epoch %in% c("c4000BC", "c1850BC")))
          Df Pillai approx F num Df den Df Pr(>F)
           7
              0.188
                        3.17
                                         55
epoch
Residuals 58
R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
                  subset = epoch %in% c("c4000BC", "c200BC")))
          Df Pillai approx F num Df den Df Pr(>F)
                         5.98
epoch
              0.303
                                         55 0.00046
Residuals 58
R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
                  subset = epoch %in% c("c4000BC", "cAD150")))
          Df Pillai approx F num Df den Df Pr(>F)
epoch
              0.362
                          7.8
                                         55 4.7e-05
Residuals 58
```

To keep the overall significance level for the set of all pairwise multivariate tests under some control (and still maintain a reasonable power), Stevens (2001) recommends setting the nominal level $\alpha=0.15$ and carrying out each test at the α/m level where m is the number of tests performed. The results of the four pairwise tests suggest that as the epochs become further separated in time the four skull measurements become increasingly distinct.

Bibliography

- Everitt, B. S. (1996), Making Sense of Statistics in Psychology: A Second-Level Course, Oxford, UK: Oxford University Press.
- Hochberg, Y. and Tamhane, A. C. (1987), *Multiple Comparison Procedures*, New York, USA: John Wiley & Sons.
- Stevens, J. (2001), Applied Multivariate Statistics for the Social Sciences, Mahwah, New Jersey, USA: Lawrence Erlbaum, 4th edition.
- Tukey, J. W. (1953), "The problem of multiple comparisons (unpublished manuscript)," in *The Collected Works of John W. Tukey VIII. Multiple Comparisons:* 1948-1983, New York, USA: Chapman & Hall.