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CHAPTER 10

Scatterplot Smoothers and Generalized
Additive Models: The Men’s Olympic
1500m, Air Pollution in the US, Risk

Factors for Kyphosis, and Women’s Role in
Society

10.1 Introduction

10.2 Scatterplot Smoothers and Generalized Additive Models

10.3 Analysis Using R

10.3.1 Olympic 1500m Times

To begin we will construct a scatterplot of winning time against the year the
games were held. The R code and the resulting plot are shown in Figure 10.1.
There is a very clear downward trend in the times over the years, and, in
addition there is a very clear outlier namely the winning time for 1896. We
shall remove this time from the data set and now concentrate on the remaining
times. First we will fit a simple linear regression to the data and plot the fit
onto the scatterplot. The code and the resulting plot are shown in Figure 10.2.
Clearly the linear regression model captures in general terms the downward
trend in the times. Now we can add the fits given by the lowess smoother and
by a cubic spline smoother; the resulting graph and the extra R code needed
are shown in Figure 10.3.

Both non-parametric fits suggest some distinct departure from linearity,
and clearly point to a quadratic model being more sensible than a linear
model here. And fitting a parametric model that includes both a linear and
a quadratic effect for the year gives a prediction curve very similar to the
non-parametric curves; see Figure 10.4.

Here use of the non-parametric smoothers has effectively diagnosed our
linear model and pointed the way to using a more suitable parametric model;
this is often how such non-parametric models can be used most effectively.
For these data, of course, it is clear that the simple linear model cannot be
suitable if the investigator is interested in predicting future times since even
the most basic knowledge of human physiology will tell us that times cannot
continue to go down. There must be some lower limit to the time man can
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R> plot(time ~ year, data = men1500m, xlab = "Year",

+ ylab = "Winning time (sec)")
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Figure 10.1 Scatterplot of year and winning time.

run 1500m. But in other situations use of the non-parametric smoothers may
point to a parametric model that could not have been identified a priori.
It is of some interest to look at the predictions of winning times in future

Olympics from both the linear and quadratic models. For example, for 2008
and 2012 the predicted times and their 95% confidence intervals can be found
using the following code
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R> men1500m1900 <- subset(men1500m, year >= 1900)

R> men1500m_lm <- lm(time ~ year, data = men1500m1900)

R> plot(time ~ year, data = men1500m1900, xlab = "Year",

+ ylab = "Winning time (sec)")

R> abline(men1500m_lm)
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Figure 10.2 Scatterplot of year and winning time with fitted values from a simple
linear model.

R> predict(men1500m_lm,

+ newdata = data.frame(year = c(2008, 2012)),

+ interval = "confidence")

fit lwr upr
1 208 205 211
2 207 203 210

R> predict(men1500m_lm2,

+ newdata = data.frame(year = c(2008, 2012)),

+ interval = "confidence")

fit lwr upr
1 214 210 218
2 214 210 219
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R> x <- men1500m1900$year

R> y <- men1500m1900$time

R> men1500m_lowess <- lowess(x, y)

R> plot(time ~ year, data = men1500m1900, xlab = "Year",

+ ylab = "Winning time (sec)")

R> lines(men1500m_lowess, lty = 2)

R> men1500m_cubic <- gam(y ~ s(x, bs = "cr"))

R> lines(x, predict(men1500m_cubic), lty = 3)
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Figure 10.3 Scatterplot of year and winning time with fitted values from a smooth
non-parametric model.

For predictions far into the future both the quadratic and the linear model
fail; we leave readers to get some more predictions to see what happens. We
can compare the first prediction with the time actually recorded by the winner
of the men’s 1500m in Beijing 2008, Rashid Ramzi from Brunei, who won the
event in 212.94 seconds. The confidence interval obtained from the simple
linear model does not include this value but the confidence interval for the
prediction derived from the quadratic model does.
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R> men1500m_lm2 <- lm(time ~ year + I(year^2),

+ data = men1500m1900)

R> plot(time ~ year, data = men1500m1900, xlab = "Year",

+ ylab = "Winning time (sec)")

R> lines(men1500m1900$year, predict(men1500m_lm2))
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Figure 10.4 Scatterplot of year and winning time with fitted values from a
quadratic model.

10.3.2 Air Pollution in US Cities

Unfortunately, we cannot fit an additive model for describing the SO2 con-
centration based on all six covariates because this leads to more parameters
than cities, i.e., more parameters than observations when using the default
parameterization of mgcv. Thus, before we can apply the gam function from
package mgcv, we have to decide which covariates should enter the model and
which subset of these covariates should be allowed to deviate from a linear
regression relationship.

As briefly discussed in Section ??, we can fit an additive model using the
iterative boosting algorithm as described by Bühlmann and Hothorn (2007).
The complexity of the model is determined by an AIC criterion, which can
also be used to determine an appropriate number of boosting iterations to
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R> USair_gam <- USair_boost[mstop(USair_aic)]

R> layout(matrix(1:6, ncol = 3))

R> plot(USair_gam, ask = FALSE)
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Figure 10.5 Partial contributions of six exploratory covariates to the predicted SO2

concentration.

choose. The methodology is available from package mboost (Hothorn et al.,
2013). We start with a small number of boosting iterations (100 by default)
and compute the AIC of the corresponding 100 models:

R> library("mboost")

R> USair_boost <- gamboost(SO2 ~ ., data = USairpollution)

R> USair_aic <- AIC(USair_boost)

R> USair_aic

[1] 6.77
Optimal number of boosting iterations: 47
Degrees of freedom (for mstop = 47): 8.31

The AIC suggests that the boosting algorithm should be stopped after 47
iterations. The partial contributions of each covariate to the predicted SO2

concentration are given in Figure 10.5. The plot indicates that all six covariates
enter the model and the selection of a subset of covariates for modeling isn’t
appropriate in this case. However, the number of manufacturing enterprises
seems to add linearly to the SO2 concentration, which simplifies the model.
Moreover, the average annual precipitation contribution seems to deviate from
zero only for some extreme observations and one might refrain from using the
covariate at all.
As always, an inspection of the model fit via a residual plot is worth the
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effort. Here, we plot the fitted values against the residuals and label the
points with the name of the corresponding city using the textplot function
from package wordcloud. Figure 10.6 shows at least two extreme observations.
Chicago has a very large observed and fitted SO2 concentration, which is due
to the huge number of inhabitants and manufacturing plants (see Figure 10.5
also). One smaller city, Providence, is associated with a rather large positive
residual indicating that the actual SO2 concentration is underestimated by
the model. In fact, this small town has a rather high SO2 concentration which
is hardly explained by our model. Overall, the model doesn’t fit the data very
well, so we should avoid overinterpreting the model structure too much. In
addition, since each of the six covariates contributes to the model, we aren’t
able to select a smaller subset of the covariates for modeling and thus fit-
ting a model using gam is still complicated (and will not add much knowledge
anyway).

10.3.3 Risk Factors for Kyphosis

Before modeling the relationship between kyphosis and the three exploratory
variables age, starting vertebral level of the surgery, and number of vertebrae
involved, we investigate the partial associations by so-called spinograms, as
introduced in Chapter 2. The numeric exploratory covariates are discretized
and their empirical relative frequencies are plotted against the conditional
frequency of kyphosis in the corresponding group. Figure 10.7 shows that
kyphosis is absent in very young or very old children, children with a small
starting vertebral level, and high number of vertebrae involved.
The logistic additive model needed to describe the conditional probability

of kyphosis given the exploratory variables can be fitted using function gam.
Here, the dimension of the basis (k) has to be modified for Number and Start

since these variables are heavily tied. As for generalized linear models, the
family argument determines the type of model to be fitted, a logistic model
in our case:

R> (kyphosis_gam <- gam(Kyphosis ~ s(Age, bs = "cr") +

+ s(Number, bs = "cr", k = 3) + s(Start, bs = "cr", k = 3),

+ family = binomial, data = kyphosis))

Family: binomial
Link function: logit

Formula:
Kyphosis ~ s(Age, bs = "cr") + s(Number, bs = "cr", k = 3) +

s(Start, bs = "cr", k = 3)

Estimated degrees of freedom:
2.23 1.22 1.84 total = 6.29

UBRE score: -0.234

The partial contributions of each covariate to the conditional probability of
kyphosis with confidence bands are shown in Figure 10.8. In essence, the same
conclusions as drawn from Figure 10.7 can be stated here. The risk of kyphosis
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R> SO2hat <- predict(USair_gam)

R> SO2 <- USairpollution$SO2

R> plot(SO2hat, SO2 - SO2hat, type = "n",

+ xlim = c(-20, max(SO2hat) * 1.1),

+ ylim = range(SO2 - SO2hat) * c(2, 1))

R> textplot(SO2hat, SO2 - SO2hat, rownames(USairpollution),

+ show.lines = FALSE, new = FALSE)

R> abline(h = 0, lty = 2, col = "grey")
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Figure 10.6 Residual plot of SO2 concentration.
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R> layout(matrix(1:3, nrow = 1))

R> spineplot(Kyphosis ~ Age, data = kyphosis,

+ ylevels = c("present", "absent"))

R> spineplot(Kyphosis ~ Number, data = kyphosis,

+ ylevels = c("present", "absent"))

R> spineplot(Kyphosis ~ Start, data = kyphosis,

+ ylevels = c("present", "absent"))

Age

K
yp

ho
si

s

0 20 80 120 160

ab
se

nt
pr

es
en

t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number

K
yp

ho
si

s

2 3 4 5 7

ab
se

nt
pr

es
en

t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Start

K
yp

ho
si

s

0 4 8 12 14 16

ab
se

nt
pr

es
en

t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 10.7 Spinograms of the three exploratory variables and response variable
kyphosis.

being present decreases with higher starting vertebral level and lower number
of vertebrae involved. Children about 100 months old are under higher risk
compared to younger or older children.

10.3.4 Women’s Role in Society

In Chapter ??, we saw that a logistic regression with an interaction between
gender and level of education described the data better than a main-effects
only model. Using an additive logistic regression model, we can fit separate,
possibly nonlinear, functions of levels of education to both genders:

R> data("womensrole", package = "HSAUR3")

R> fm1 <- cbind(agree, disagree) ~ s(education, by = gender)

R> womensrole_gam <- gam(fm1, data = womensrole,

+ family = binomial())

The resulting model is best inspected by a plot (Figure 10.9). For males, the
log-odds of agreement decreases linearly with each additional year of educa-
tion. For females, the log-odds is more or less constant up to five years of
education and only then begins to decrease. After 15 years, there seems to be
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R> trans <- function(x)

+ binomial()$linkinv(x)

R> layout(matrix(1:3, nrow = 1))

R> plot(kyphosis_gam, select = 1, shade = TRUE, trans = trans)

R> plot(kyphosis_gam, select = 2, shade = TRUE, trans = trans)

R> plot(kyphosis_gam, select = 3, shade = TRUE, trans = trans)
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Figure 10.8 Partial contributions of three exploratory variables with confidence
bands.

no further impact on the log-odds. When we plot the resulting fitted proba-
bilities in a way similar to Figure ??, we see that the interaction is even more
pronounced in the additive compared to the linear model. The flat curve for
women with less than five years of education can be explained by the rather
large variability of the answers in this area but the plateau to the right is due
to two groups of highly educated women with a rather large proportion of
agreement.

10.4 Summary of Findings

Olympic 1500m times Here the use of a generalized additive model suggested
that a quadratic model might best describe the data. When such a model
was fitted it made reasonable predictions of the winner’s times in the
Olympic Games of 2008 and 2012.

Air pollution data Finding a suitable model for these data was problematic
because of the outliers in the data and the high correlations between some
pairs of explanatory variables. Except for wind, the fitted partial contri-
butions are well approximated by a linear function for most of the obser-
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R> layout(matrix(1:2, nrow = 1))

R> plot(womensrole_gam, select = 1, shade = TRUE)

R> plot(womensrole_gam, select = 1, shade = TRUE)
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Figure 10.9 Effects of level of education for males (right) and females (left) on the
log-odds scale derived from an additive logistic regression model. The
shaded area denotes confidence bands.

vations and it might be questioned if the more complex additive model is
really needed.

Kyphosis The risk of kyphosis being present decreases with higher starting
vertebral level and lower number of vertebrae involved. Children about 100
months old are under higher risk compared to younger or older children.

Women’s role in society For males, the log-odds of agreement decreases lin-
early with each additional year of education. For females, the log-odds is
more or less constant up to five years of education and only then begins
to decrease. After 15 years, there seems to be no further impact on the
log-odds.

10.5 Final Comments

Additive models offer flexible modeling tools for regression problems. They
stand between generalized linear models, where the regression relationship is
assumed to be linear, and more complex models like random forests (see Chap-
ter 9) where the regression relationship remains unspecified. Smooth functions
describing the influence of covariates on the response can be easily interpreted.
Variable selection is a technically difficult problem in this class of models;
boosting methods are one possibility to deal with this problem.
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R> myplot(predict(womensrole_gam, type = "response"))
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Figure 10.10 Effects of level of education for males (right) and females (left) on the
log-odds scale derived from an additive logistic regression model. The
shaded area denotes confidence bands.

Exercises

Ex. 10.1 Consider the body fat data introduced in Chapter 9, Table ??.
First fit a generalized additive model assuming normal errors using function
gam. Are all potential covariates informative? Check the results against a
generalized additive model that underwent AIC-based variable selection
(fitted using function gamboost).

Ex. 10.2 Again fit an additive model to the body fat data, but this time for
a log-transformed response. Compare the two models, which one is more
appropriate?
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Ex. 10.3 Try to fit a logistic additive model to the glaucoma data discussed
in Chapter 9. Which covariates should enter the model and how is their
influence on the probability of suffering from glaucoma?

Ex. 10.4 Investigate the use of different types of scatterplot smoothers on the
Hubble data in Table ?? in Chapter ??.
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