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bagging Bagging Classification, Regression and Survival Trees

Description

Bagging for classification, regression and survival trees.

Usage

## S3 method for class 'factor'
ipredbagg(y, X=NULL, nbagg=25, control=

rpart.control(minsplit=2, cp=0, xval=0),
comb=NULL, coob=FALSE, ns=length(y), keepX = TRUE, ...)

## S3 method for class 'numeric'
ipredbagg(y, X=NULL, nbagg=25, control=rpart.control(xval=0),

comb=NULL, coob=FALSE, ns=length(y), keepX = TRUE, ...)
## S3 method for class 'Surv'
ipredbagg(y, X=NULL, nbagg=25, control=rpart.control(xval=0),

comb=NULL, coob=FALSE, ns=dim(y)[1], keepX = TRUE, ...)
## S3 method for class 'data.frame'
bagging(formula, data, subset, na.action=na.rpart, ...)
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Arguments

y the response variable: either a factor vector of class labels (bagging classification
trees), a vector of numerical values (bagging regression trees) or an object of
class Surv (bagging survival trees).

X a data frame of predictor variables.

nbagg an integer giving the number of bootstrap replications.

coob a logical indicating whether an out-of-bag estimate of the error rate (misclassi-
fication error, root mean squared error or Brier score) should be computed. See
predict.classbagg for details.

control options that control details of the rpart algorithm, see rpart.control. It is
wise to set xval = 0 in order to save computing time. Note that the default
values depend on the class of y.

comb a list of additional models for model combination, see below for some examples.
Note that argument method for double-bagging is no longer there, comb is much
more flexible.

ns number of sample to draw from the learning sample. By default, the usual boot-
strap n out of n with replacement is performed. If ns is smaller than length(y),
subagging (Buehlmann and Yu, 2002), i.e. sampling ns out of length(y) with-
out replacement, is performed.

keepX a logical indicating whether the data frame of predictors should be returned.
Note that the computation of the out-of-bag estimator requires keepX=TRUE.

formula a formula of the form lhs ~ rhs where lhs is the response variable and rhs a
set of predictors.

data optional data frame containing the variables in the model formula.

subset optional vector specifying a subset of observations to be used.

na.action function which indicates what should happen when the data contain NAs. De-
faults to na.rpart.

... additional parameters passed to ipredbagg or rpart, respectively.

Details

The random forest implementations randomForest and cforest are more flexible and reliable for
computing bootstrap-aggregated trees than this function and should be used instead.

Bagging for classification and regression trees were suggested by Breiman (1996a, 1998) in order
to stabilise trees.

The trees in this function are computed using the implementation in the rpart package. The generic
function ipredbagg implements methods for different responses. If y is a factor, classification trees
are constructed. For numerical vectors y, regression trees are aggregated and if y is a survival object,
bagging survival trees (Hothorn et al, 2003) is performed. The function bagging offers a formula
based interface to ipredbagg.

nbagg bootstrap samples are drawn and a tree is constructed for each of them. There is no general
rule when to stop the tree growing. The size of the trees can be controlled by control argument or
prune.classbagg. By default, classification trees are as large as possible whereas regression trees
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and survival trees are build with the standard options of rpart.control. If nbagg=1, one single
tree is computed for the whole learning sample without bootstrapping.

If coob is TRUE, the out-of-bag sample (Breiman, 1996b) is used to estimate the prediction error
corresponding to class(y). Alternatively, the out-of-bag sample can be used for model combina-
tion, an out-of-bag error rate estimator is not available in this case. Double-bagging (Hothorn and
Lausen, 2003) computes a LDA on the out-of-bag sample and uses the discriminant variables as
additional predictors for the classification trees. comb is an optional list of lists with two elements
model and predict. model is a function with arguments formula and data. predict is a func-
tion with arguments object, newdata only. If the estimation of the covariance matrix in lda fails
due to a limited out-of-bag sample size, one can use slda instead. See the example section for an
example of double-bagging. The methodology is not limited to a combination with LDA: bundling
(Hothorn and Lausen, 2002b) can be used with arbitrary classifiers.

NOTE: Up to ipred version 0.9-0, bagging was performed using a modified version of the original
rpart function. Due to interface changes in rpart 3.1-55, the bagging function had to be rewritten.
Results of previous version are not exactly reproducible.

Value

The class of the object returned depends on class(y): classbagg, regbagg and survbagg. Each
is a list with elements

y the vector of responses.
X the data frame of predictors.
mtrees multiple trees: a list of length nbagg containing the trees (and possibly addi-

tional objects) for each bootstrap sample.
OOB logical whether the out-of-bag estimate should be computed.
err if OOB=TRUE, the out-of-bag estimate of misclassification or root mean squared

error or the Brier score for censored data.
comb logical whether a combination of models was requested.

For each class methods for the generics prune.rpart, print, summary and predict are available
for inspection of the results and prediction, for example: print.classbagg, summary.classbagg,
predict.classbagg and prune.classbagg for classification problems.

References

Leo Breiman (1996a), Bagging Predictors. Machine Learning 24(2), 123–140.

Leo Breiman (1996b), Out-Of-Bag Estimation. Technical Report https://www.stat.berkeley.
edu/~breiman/OOBestimation.pdf.

Leo Breiman (1998), Arcing Classifiers. The Annals of Statistics 26(3), 801–824.

Peter Buehlmann and Bin Yu (2002), Analyzing Bagging. The Annals of Statistics 30(4), 927–961.

Torsten Hothorn and Berthold Lausen (2003), Double-Bagging: Combining classifiers by bootstrap
aggregation. Pattern Recognition, 36(6), 1303–1309.

Torsten Hothorn and Berthold Lausen (2005), Bundling Classifiers by Bagging Trees. Computa-
tional Statistics & Data Analysis, 49, 1068–1078.

Torsten Hothorn, Berthold Lausen, Axel Benner and Martin Radespiel-Troeger (2004), Bagging
Survival Trees. Statistics in Medicine, 23(1), 77–91.

https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf
https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf
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Examples

library("MASS")
library("survival")

# Classification: Breast Cancer data

data("BreastCancer", package = "mlbench")

# Test set error bagging (nbagg = 50): 3.7% (Breiman, 1998, Table 5)

mod <- bagging(Class ~ Cl.thickness + Cell.size
+ Cell.shape + Marg.adhesion
+ Epith.c.size + Bare.nuclei
+ Bl.cromatin + Normal.nucleoli
+ Mitoses, data=BreastCancer, coob=TRUE)

print(mod)

# Test set error bagging (nbagg=50): 7.9% (Breiman, 1996a, Table 2)
data("Ionosphere", package = "mlbench")
Ionosphere$V2 <- NULL # constant within groups

bagging(Class ~ ., data=Ionosphere, coob=TRUE)

# Double-Bagging: combine LDA and classification trees

# predict returns the linear discriminant values, i.e. linear combinations
# of the original predictors

comb.lda <- list(list(model=lda, predict=function(obj, newdata)
predict(obj, newdata)$x))

# Note: out-of-bag estimator is not available in this situation, use
# errorest

mod <- bagging(Class ~ ., data=Ionosphere, comb=comb.lda)

predict(mod, Ionosphere[1:10,])

# Regression:

data("BostonHousing", package = "mlbench")

# Test set error (nbagg=25, trees pruned): 3.41 (Breiman, 1996a, Table 8)

mod <- bagging(medv ~ ., data=BostonHousing, coob=TRUE)
print(mod)

library("mlbench")
learn <- as.data.frame(mlbench.friedman1(200))

# Test set error (nbagg=25, trees pruned): 2.47 (Breiman, 1996a, Table 8)
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mod <- bagging(y ~ ., data=learn, coob=TRUE)
print(mod)

# Survival data

# Brier score for censored data estimated by
# 10 times 10-fold cross-validation: 0.2 (Hothorn et al,
# 2002)

data("DLBCL", package = "ipred")
mod <- bagging(Surv(time,cens) ~ MGEc.1 + MGEc.2 + MGEc.3 + MGEc.4 + MGEc.5 +

MGEc.6 + MGEc.7 + MGEc.8 + MGEc.9 +
MGEc.10 + IPI, data=DLBCL, coob=TRUE)

print(mod)

bootest Bootstrap Error Rate Estimators

Description

Those functions are low-level functions used by errorest and are normally not called by users.

Usage

## S3 method for class 'factor'
bootest(y, formula, data, model, predict, nboot=25,
bc632plus=FALSE, list.tindx = NULL, predictions = FALSE,
both.boot = FALSE, ...)

Arguments

y the response variable, either of class factor (classification), numeric (regres-
sion) or Surv (survival).

formula a formula object.

data data frame of predictors and response described in formula.

model a function implementing the predictive model to be evaluated. The function
model can either return an object representing a fitted model or a function with
argument newdata which returns predicted values. In this case, the predict
argument to errorest is ignored.

predict a function with arguments object and newdata only which predicts the status
of the observations in newdata based on the fitted model in object.

nboot number of bootstrap replications to be used.

bc632plus logical. Should the bias corrected version of misclassification error be com-
puted?
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predictions logical, return a matrix of predictions. The ith column contains predictions of
the ith out-of-bootstrap sample and ’NA’s corresponding to the ith bootstrap
sample.

list.tindx list of numeric vectors, indicating which observations are included in each boot-
strap sample.

both.boot logical, return both (bootstrap and 632plus) estimations or only one of them.

... additional arguments to model.

Details

See errorest.

control.errorest Control Error Rate Estimators

Description

Some parameters that control the behaviour of errorest.

Usage

control.errorest(k = 10, nboot = 25, strat = FALSE, random = TRUE,
predictions = FALSE, getmodels=FALSE, list.tindx = NULL)

Arguments

k integer, specify $k$ for $k$-fold cross-validation.

nboot integer, number of bootstrap replications.

strat logical, if TRUE, cross-validation is performed using stratified sampling (for clas-
sification problems).

random logical, if TRUE, cross-validation is performed using a random ordering of the
data.

predictions logical, indicates whether the prediction for each observation should be returned
or not (classification and regression only). For a bootstrap based estimator a
matrix of size ’number of observations’ times nboot is returned with predicted
values of the ith out-of-bootstrap sample in column i and ’NA’s for those obser-
vations not included in the ith out-of-bootstrap sample.

getmodels logical, indicates a list of all models should be returned. For cross-validation
only.

list.tindx list of numeric vectors, indicating which observations are included in each boot-
strap or cross-validation sample, respectively.

Value

A list with the same components as arguments.
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cv Cross-validated Error Rate Estimators.

Description

Those functions are low-level functions used by errorest and are normally not called by users.

Usage

## S3 method for class 'factor'
cv(y, formula, data, model, predict, k=10, random=TRUE,

strat=FALSE,
predictions=NULL, getmodels=NULL, list.tindx = NULL, ...)

Arguments

y response variable, either of class factor (classification), numeric (regression)
or Surv (survival).

formula a formula object.

data data frame of predictors and response described in formula.

model a function implementing the predictive model to be evaluated. The function
model can either return an object representing a fitted model or a function with
argument newdata which returns predicted values. In this case, the predict
argument to errorest is ignored.

predict a function with arguments object and newdata only which predicts the status
of the observations in newdata based on the fitted model in object.

k k-fold cross-validation.

random logical, indicates whether a random order or the given order of the data should
be used for sample splitting or not, defaults to TRUE.

strat logical, stratified sampling or not, defaults to FALSE.

predictions logical, return the prediction of each observation.

getmodels logical, return a list of models for each fold.

list.tindx list of numeric vectors, indicating which observations are included in each cross-
validation sample.

... additional arguments to model.

Details

See errorest.
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DLBCL Diffuse Large B-Cell Lymphoma

Description

A data frame with gene expression data from diffuse large B-cell lymphoma (DLBCL) patients.

Usage

data("DLBCL")

Format

This data frame contains the following columns:

DLCL.Sample DLBCL identifier.

Gene.Expression Gene expression group.

time survival time in month.

cens censoring: 0 censored, 1 dead.

IPI International prognostic index.

MGEc.1 mean gene expression in cluster 1.

MGEc.2 mean gene expression in cluster 2.

MGEc.3 mean gene expression in cluster 3.

MGEc.4 mean gene expression in cluster 4.

MGEc.5 mean gene expression in cluster 5.

MGEc.6 mean gene expression in cluster 6.

MGEc.7 mean gene expression in cluster 7.

MGEc.8 mean gene expression in cluster 8.

MGEc.9 mean gene expression in cluster 9.

MGEc.10 mean gene expression in cluster 10.

Source

Except of MGE, the data is published at http://llmpp.nih.gov/lymphoma/data.shtml. MGEc.*
is the mean of the gene expression in each of ten clusters derived by agglomerative average linkage
hierarchical cluster analysis (Hothorn et al., 2002).

References

Ash A. Alizadeh et. al (2000), Distinct types of diffuse large B-cell lymphoma identified by gene
expression profiling. Nature, 403, 504–509.

Torsten Hothorn, Berthold Lausen, Axel Benner and Martin Radespiel-Troeger (2004), Bagging
Survival Trees. Statistics in Medicine, 23, 77–91.

http://llmpp.nih.gov/lymphoma/data.shtml
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Examples

suppressWarnings(RNGversion("3.5.3"))
set.seed(290875)

data("DLBCL", package="ipred")
library("survival")
survfit(Surv(time, cens) ~ 1, data=DLBCL)

dystrophy Detection of muscular dystrophy carriers.

Description

The dystrophy data frame has 209 rows and 10 columns.

Usage

data(dystrophy)

Format

This data frame contains the following columns:

OBS numeric. Observation number.

HospID numeric. Hospital ID number.

AGE numeric, age in years.

M numeric. Month of examination.

Y numeric. Year of examination.

CK numeric. Serum marker creatine kinase.

H numeric. Serum marker hemopexin.

PK numeric. Serum marker pyruvate kinase.

LD numeric. Serum marker lactate dehydroginase.

Class factor with levels, carrier and normal.

Details

Duchenne Muscular Dystrophy (DMD) is a genetically transmitted disease, passed from a mother
to her children. Affected female offspring usually suffer no apparent symptoms, male offspring
with the disease die at young age. Although female carriers have no physical symptoms they tend
to exhibit elevated levels of certain serum enzymes or proteins.
The dystrophy dataset contains 209 observations of 75 female DMD carriers and 134 female DMD
non-carrier. It includes 6 variables describing age of the female and the serum parameters serum
marker creatine kinase (CK), serum marker hemopexin (H), serum marker pyruvate kinase (PK)
and serum marker lactate dehydroginase (LD). The serum markers CK and H may be measured
rather inexpensive from frozen serum, PK and LD requires fresh serum.
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Source

D.Andrews and A. Herzberg (1985), Data. Berlin: Springer-Verlag.

References

Robert Tibshirani and Geoffry Hinton (1998), Coaching variables for regression and classification.
Statistics and Computing 8, 25-33.

Examples

## Not run:

data("dystrophy")
library("rpart")
errorest(Class~CK+H~AGE+PK+LD, data = dystrophy, model = inbagg,
pFUN = list(list(model = lm, predict = mypredict.lm), list(model = rpart)),
ns = 0.75, estimator = "cv")

## End(Not run)

errorest Estimators of Prediction Error

Description

Resampling based estimates of prediction error: misclassification error, root mean squared error or
Brier score for survival data.

Usage

## S3 method for class 'data.frame'
errorest(formula, data, subset, na.action=na.omit,

model=NULL, predict=NULL,
estimator=c("cv", "boot", "632plus"),
est.para=control.errorest(), ...)

Arguments

formula a formula of the form lhs ~ rhs. Either describing the model of explanatory
and response variables in the usual way (see lm) or the model between explana-
tory and intermediate variables in the framework of indirect classification, see
inclass.

data a data frame containing the variables in the model formula and additionally the
class membership variable if model = inclass. data is required for indirect
classification, otherwise formula is evaluated in the calling environment.

subset optional vector, specifying a subset of observations to be used.
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na.action function which indicates what should happen when the data contains NA’s, de-
faults to na.omit.

model function. Modelling technique whose error rate is to be estimated. The function
model can either return an object representing a fitted model or a function with
argument newdata which returns predicted values. In this case, the predict
argument to errorest is ignored.

predict function. Prediction method to be used. The vector of predicted values must
have the same length as the the number of to-be-predicted observations. Pre-
dictions corresponding to missing data must be replaced by NA. Additionally,
predict has to return predicted values comparable to the responses (that is:
factors for classification problems). See the example on how to make this sure
for any predictor.

estimator estimator of the misclassification error: cv cross-validation, boot bootstrap or
632plus bias corrected bootstrap (classification only).

est.para a list of additional parameters that control the calculation of the estimator, see
control.errorest for details.

... additional parameters to model.

Details

The prediction error for classification and regression models as well as predictive models for cen-
sored data using cross-validation or the bootstrap can be computed by errorest. For classification
problems, the estimated misclassification error is returned. The root mean squared error is com-
puted for regression problems and the Brier score for censored data (Graf et al., 1999) is reported if
the response is censored.

Any model can be specified as long as it is a function with arguments model(formula, data,
subset, na.action, ...). If a method predict.model(object, newdata, ...) is available,
predict does not need to be specified. However, predict has to return predicted values in the
same order and of the same length corresponding to the response. See the examples below.

$k$-fold cross-validation and the usual bootstrap estimator with est.para$nboot bootstrap repli-
cations can be computed for all kind of problems. The bias corrected .632+ bootstrap by Efron and
Tibshirani (1997) is available for classification problems only. Use control.errorest to specify
additional arguments.

errorest is a formula based interface to the generic functions cv or bootest which implement
methods for classification, regression and survival problems.

Value

The class of the object returned depends on the class of the response variable and the estimator
used. In each case, it is a list with an element error and additional information. print methods
are available for the inspection of the results.

References

Brian D. Ripley (1996), Pattern Recognition and Neural Networks. Cambridge: Cambridge Uni-
versity Press.
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Bradley Efron and Robert Tibshirani (1997), Improvements on Cross-Validation: The .632+ Boot-
strap Estimator. Journal of the American Statistical Association 92(438), 548–560.

Erika Graf, Claudia Schmoor, Willi Sauerbrei and Martin Schumacher (1999), Assessment and
comparison of prognostic classification schemes for survival data. Statistics in Medicine 18(17-18),
2529–2545.

Rosa A. Schiavo and David J. Hand (2000), Ten More Years of Error Rate Research. International
Statistical Review 68(3), 296-310.

David J. Hand, Hua Gui Li, Niall M. Adams (2001), Supervised Classification with Structured Class
Definitions. Computational Statistics & Data Analysis 36, 209–225.

Examples

# Classification

data("iris")
library("MASS")

# force predict to return class labels only
mypredict.lda <- function(object, newdata)

predict(object, newdata = newdata)$class

# 10-fold cv of LDA for Iris data
errorest(Species ~ ., data=iris, model=lda,

estimator = "cv", predict= mypredict.lda)

data("PimaIndiansDiabetes", package = "mlbench")
## Not run:
# 632+ bootstrap of LDA for Diabetes data
errorest(diabetes ~ ., data=PimaIndiansDiabetes, model=lda,

estimator = "632plus", predict= mypredict.lda)

## End(Not run)

#cv of a fixed partition of the data
list.tindx <- list(1:100, 101:200, 201:300, 301:400, 401:500,

501:600, 601:700, 701:768)

errorest(diabetes ~ ., data=PimaIndiansDiabetes, model=lda,
estimator = "cv", predict = mypredict.lda,
est.para = control.errorest(list.tindx = list.tindx))

## Not run:
#both bootstrap estimations based on fixed partitions

list.tindx <- vector(mode = "list", length = 25)
for(i in 1:25) {

list.tindx[[i]] <- sample(1:768, 768, TRUE)
}

errorest(diabetes ~ ., data=PimaIndiansDiabetes, model=lda,
estimator = c("boot", "632plus"), predict= mypredict.lda,
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est.para = control.errorest(list.tindx = list.tindx))

## End(Not run)
data("Glass", package = "mlbench")

# LDA has cross-validated misclassification error of
# 38% (Ripley, 1996, page 98)

# Pruned trees about 32% (Ripley, 1996, page 230)

# use stratified sampling here, i.e. preserve the class proportions
errorest(Type ~ ., data=Glass, model=lda,

predict=mypredict.lda, est.para=control.errorest(strat=TRUE))

# force predict to return class labels
mypredict.rpart <- function(object, newdata)

predict(object, newdata = newdata,type="class")

library("rpart")
pruneit <- function(formula, ...)

prune(rpart(formula, ...), cp =0.01)

errorest(Type ~ ., data=Glass, model=pruneit,
predict=mypredict.rpart, est.para=control.errorest(strat=TRUE))

# compute sensitivity and specifity for stabilised LDA

data("GlaucomaM", package = "TH.data")

error <- errorest(Class ~ ., data=GlaucomaM, model=slda,
predict=mypredict.lda, est.para=control.errorest(predictions=TRUE))

# sensitivity

mean(error$predictions[GlaucomaM$Class == "glaucoma"] == "glaucoma")

# specifity

mean(error$predictions[GlaucomaM$Class == "normal"] == "normal")

# Indirect Classification: Smoking data

data(Smoking)
# Set three groups of variables:
# 1) explanatory variables are: TarY, NicY, COY, Sex, Age
# 2) intermediate variables are: TVPS, BPNL, COHB
# 3) response (resp) is defined by:

resp <- function(data){
data <- data[, c("TVPS", "BPNL", "COHB")]
res <- t(t(data) > c(4438, 232.5, 58))
res <- as.factor(ifelse(apply(res, 1, sum) > 2, 1, 0))
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res
}

response <- resp(Smoking[ ,c("TVPS", "BPNL", "COHB")])
smoking <- cbind(Smoking, response)

formula <- response~TVPS+BPNL+COHB~TarY+NicY+COY+Sex+Age

# Estimation per leave-one-out estimate for the misclassification is
# 36.36% (Hand et al., 2001), using indirect classification with
# linear models
## Not run:
errorest(formula, data = smoking, model = inclass,estimator = "cv",

pFUN = list(list(model=lm, predict = mypredict.lm)), cFUN = resp,
est.para=control.errorest(k=nrow(smoking)))

## End(Not run)

# Regression

data("BostonHousing", package = "mlbench")

# 10-fold cv of lm for Boston Housing data
errorest(medv ~ ., data=BostonHousing, model=lm,

est.para=control.errorest(random=FALSE))

# the same, with "model" returning a function for prediction
# instead of an object of class "lm"

mylm <- function(formula, data) {
mod <- lm(formula, data)
function(newdata) predict(mod, newdata)

}

errorest(medv ~ ., data=BostonHousing, model=mylm,
est.para=control.errorest(random=FALSE))

# Survival data

data("GBSG2", package = "TH.data")
library("survival")

# prediction is fitted Kaplan-Meier
predict.survfit <- function(object, newdata) object

# 5-fold cv of Kaplan-Meier for GBSG2 study
errorest(Surv(time, cens) ~ 1, data=GBSG2, model=survfit,

predict=predict.survfit, est.para=control.errorest(k=5))
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GlaucomaMVF Glaucoma Database

Description

The GlaucomaMVF data has 170 observations in two classes. 66 predictors are derived from a con-
focal laser scanning image of the optic nerve head, from a visual field test, a fundus photography
and a measurement of the intra occular pressure.

Usage

data("GlaucomaMVF")

Format

This data frame contains the following predictors describing the morphology of the optic nerve
head, the visual field, the intra occular pressure and a membership variable:

ag area global.

at area temporal.

as area superior.

an area nasal.

ai area inferior.

eag effective area global.

eat effective area temporal.

eas effective area superior.

ean effective area nasal.

eai effective area inferior.

abrg area below reference global.

abrt area below reference temporal.

abrs area below reference superior.

abrn area below reference nasal.

abri area below reference inferior.

hic height in contour.

mhcg mean height contour global.

mhct mean height contour temporal.

mhcs mean height contour superior.

mhcn mean height contour nasal.

mhci mean height contour inferior.

phcg peak height contour.

phct peak height contour temporal.
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phcs peak height contour superior.

phcn peak height contour nasal.

phci peak height contour inferior.

hvc height variation contour.

vbsg volume below surface global.

vbst volume below surface temporal.

vbss volume below surface superior.

vbsn volume below surface nasal.

vbsi volume below surface inferior.

vasg volume above surface global.

vast volume above surface temporal.

vass volume above surface superior.

vasn volume above surface nasal.

vasi volume above surface inferior.

vbrg volume below reference global.

vbrt volume below reference temporal.

vbrs volume below reference superior.

vbrn volume below reference nasal.

vbri volume below reference inferior.

varg volume above reference global.

vart volume above reference temporal.

vars volume above reference superior.

varn volume above reference nasal.

vari volume above reference inferior.

mdg mean depth global.

mdt mean depth temporal.

mds mean depth superior.

mdn mean depth nasal.

mdi mean depth inferior.

tmg third moment global.

tmt third moment temporal.

tms third moment superior.

tmn third moment nasal.

tmi third moment inferior.

mr mean radius.

rnf retinal nerve fiber thickness.

mdic mean depth in contour.
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emd effective mean depth.

mv mean variability.

tension intra occular pressure.

clv corrected loss variance, variability of the visual field.

cs contrast sensitivity of the visual field.

lora loss of rim area, measured by fundus photography.

Class a factor with levels glaucoma and normal.

Details

Confocal laser images of the eye background are taken with the Heidelberg Retina Tomograph and
variables 1-62 are derived. Most of these variables describe either the area or volume in certain
parts of the papilla and are measured in four sectors (temporal, superior, nasal and inferior) as well
as for the whole papilla (global). The global measurement is, roughly, the sum of the measurements
taken in the four sector.

The perimeter ‘Octopus’ measures the visual field variables clv and cs, stereo optic disks pho-
tographs were taken with a telecentric fundus camera and lora is derived.

Observations of both groups are matched by age and sex, to prevent for possible confounding.

Note

GLaucomMVF overlaps in some parts with GlaucomaM.

Source

Andrea Peters, Berthold Lausen, Georg Michelson and Olaf Gefeller (2003), Diagnosis of glaucoma
by indirect classifiers. Methods of Information in Medicine 1, 99-103.

Examples

## Not run:

data("GlaucomaMVF", package = "ipred")
library("rpart")

response <- function (data) {
attach(data)
res <- ifelse((!is.na(clv) & !is.na(lora) & clv >= 5.1 & lora >=

49.23372) | (!is.na(clv) & !is.na(lora) & !is.na(cs) &
clv < 5.1 & lora >= 58.55409 & cs < 1.405) | (is.na(clv) &
!is.na(lora) & !is.na(cs) & lora >= 58.55409 & cs < 1.405) |
(!is.na(clv) & is.na(lora) & cs < 1.405), 0, 1)

detach(data)
factor (res, labels = c("glaucoma", "normal"))

}

errorest(Class~clv+lora+cs~., data = GlaucomaMVF, model=inclass,
estimator="cv", pFUN = list(list(model = rpart)), cFUN = response)



inbagg 19

## End(Not run)

inbagg Indirect Bagging

Description

Function to perform the indirect bagging and subagging.

Usage

## S3 method for class 'data.frame'
inbagg(formula, data, pFUN=NULL,
cFUN=list(model = NULL, predict = NULL, training.set = NULL),
nbagg = 25, ns = 0.5, replace = FALSE, ...)

Arguments

formula formula. A formula specified as y~w1+w2+w3~x1+x2+x3 describes how to model
the intermediate variables w1, w2, w3 and the response variable y, if no other
formula is specified by the elements of pFUN or in cFUN

data data frame of explanatory, intermediate and response variables.

pFUN list of lists, which describe models for the intermediate variables, details are
given below.

cFUN either a fixed function with argument newdata and returning the class member-
ship by default, or a list specifying a classifying model, similar to one element
of pFUN. Details are given below.

nbagg number of bootstrap samples.

ns proportion of sample to be drawn from the learning sample. By default, subag-
ging with 50% is performed, i.e. draw 0.5*n out of n without replacement.

replace logical. Draw with or without replacement.

... additional arguments (e.g. subset).

Details

A given data set is subdivided into three types of variables: explanatory, intermediate and response
variables.

Here, each specified intermediate variable is modelled separately following pFUN, a list of lists
with elements specifying an arbitrary number of models for the intermediate variables and an
optional element training.set = c("oob", "bag", "all"). The element training.set deter-
mines whether, predictive models for the intermediate are calculated based on the out-of-bag sam-
ple ("oob"), the default, on the bag sample ("bag") or on all available observations ("all"). The
elements of pFUN, specifying the models for the intermediate variables are lists as described in
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inclass. Note that, if no formula is given in these elements, the functional relationship of formula
is used.

The response variable is modelled following cFUN. This can either be a fixed classifying function
as described in Peters et al. (2003) or a list, which specifies the modelling technique to be ap-
plied. The list contains the arguments model (which model to be fitted), predict (optional, how
to predict), formula (optional, of type y~w1+w2+w3+x1+x2 determines the variables the classifying
function is based on) and the optional argument training.set = c("fitted.bag", "original",
"fitted.subset") specifying whether the classifying function is trained on the predicted obser-
vations of the bag sample ("fitted.bag"), on the original observations ("original") or on the
predicted observations not included in a defined subset ("fitted.subset"). Per default the for-
mula specified in formula determines the variables, the classifying function is based on.

Note that the default of cFUN = list(model = NULL, training.set = "fitted.bag") uses the
function rpart and the predict function predict(object, newdata, type = "class").

Value

An object of class "inbagg", that is a list with elements

mtrees a list of length nbagg, describing the prediction models corresponding to each
bootstrap sample. Each element of mtrees is a list with elements bindx (ob-
servations of bag sample), btree (classifying function of bag sample) and bfct
(predictive models for intermediates of bag sample).

y vector of response values.

W data frame of intermediate variables.

X data frame of explanatory variables.

References

David J. Hand, Hua Gui Li, Niall M. Adams (2001), Supervised classification with structured class
definitions. Computational Statistics & Data Analysis 36, 209–225.

Andrea Peters, Berthold Lausen, Georg Michelson and Olaf Gefeller (2003), Diagnosis of glaucoma
by indirect classifiers. Methods of Information in Medicine 1, 99-103.

See Also

rpart, bagging, lm

Examples

library("MASS")
library("rpart")
y <- as.factor(sample(1:2, 100, replace = TRUE))
W <- mvrnorm(n = 200, mu = rep(0, 3), Sigma = diag(3))
X <- mvrnorm(n = 200, mu = rep(2, 3), Sigma = diag(3))
colnames(W) <- c("w1", "w2", "w3")
colnames(X) <- c("x1", "x2", "x3")
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DATA <- data.frame(y, W, X)

pFUN <- list(list(formula = w1~x1+x2, model = lm, predict = mypredict.lm),
list(model = rpart))

inbagg(y~w1+w2+w3~x1+x2+x3, data = DATA, pFUN = pFUN)

inclass Indirect Classification

Description

A framework for the indirect classification approach.

Usage

## S3 method for class 'data.frame'
inclass(formula, data, pFUN = NULL, cFUN = NULL, ...)

Arguments

formula formula. A formula specified as y~w1+w2+w3~x1+x2+x3 models each interme-
diate variable w1, w2, w3 by wi~x1+x2+x3 and the response by y~w1+w2+w3 if
no other formulas are given in pFUN or cFUN.

data data frame of explanatory, intermediate and response variables.

pFUN list of lists, which describe models for the intermediate variables, see below for
details.

cFUN either a function or a list which describes the model for the response variable.
The function has the argument newdata only.

... additional arguments, passed to model fitting of the response variable.

Details

A given data set is subdivided into three types of variables: those to be used predicting the class
(explanatory variables) those to be used defining the class (intermediate variables) and the class
membership variable itself (response variable). Intermediate variables are modelled based on the
explanatory variables, the class membership variable is defined on the intermediate variables.

Each specified intermediate variable is modelled separately following pFUN and a formula specified
by formula. pFUN is a list of lists, the maximum length of pFUN is the number of intermediate
variables. Each element of pFUN is a list with elements:
model - a function with arguments formula and data;
predict - an optional function with arguments object, newdata only, if predict is not specified,
the predict method of model is used;
formula - specifies the formula for the corresponding model (optional), the formula described in
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y~w1+w2+w3~x1+x2+x3 is used if no other is specified.

The response is classified following cFUN, which is either a fixed function or a list as described be-
low. The determined function cFUN assigns the intermediate (and explanatory) variables to a certain
class membership, the list cFUN has the elements formula, model, predict and training.set.
The elements formula, model, predict are structured as described by pFUN, the described model
is trained on the original (intermediate variables) if training.set="original" or if training.set
= NULL, on the fitted values if training.set = "fitted" or on observations not included in a spec-
ified subset if training.set = "subset".

A list of prediction models corresponding to each intermediate variable, a predictive function for
the response, a list of specifications for the intermediate and for the response are returned.
For a detailed description on indirect classification see Hand et al. (2001).

Value

An object of class inclass, consisting of a list of

model.intermediate

list of fitted models for each intermediate variable.

model.response predictive model for the response variable.
para.intermediate

list, where each element is again a list and specifies the model for each interme-
diate variable.

para.response a list which specifies the model for response variable.

References

David J. Hand, Hua Gui Li, Niall M. Adams (2001), Supervised classification with structured class
definitions. Computational Statistics & Data Analysis 36, 209–225.

Andrea Peters, Berthold Lausen, Georg Michelson and Olaf Gefeller (2003), Diagnosis of glaucoma
by indirect classifiers. Methods of Information in Medicine 1, 99-103.

See Also

bagging, inclass

Examples

data("Smoking", package = "ipred")
# Set three groups of variables:
# 1) explanatory variables are: TarY, NicY, COY, Sex, Age
# 2) intermediate variables are: TVPS, BPNL, COHB
# 3) response (resp) is defined by:

classify <- function(data){
data <- data[,c("TVPS", "BPNL", "COHB")]
res <- t(t(data) > c(4438, 232.5, 58))
res <- as.factor(ifelse(apply(res, 1, sum) > 2, 1, 0))
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res
}

response <- classify(Smoking[ ,c("TVPS", "BPNL", "COHB")])
smoking <- data.frame(Smoking, response)

formula <- response~TVPS+BPNL+COHB~TarY+NicY+COY+Sex+Age

inclass(formula, data = smoking, pFUN = list(list(model = lm, predict =
mypredict.lm)), cFUN = classify)

ipredknn k-Nearest Neighbour Classification

Description

$k$-nearest neighbour classification with an interface compatible to bagging and errorest.

Usage

ipredknn(formula, data, subset, na.action, k=5, ...)

Arguments

formula a formula of the form lhs ~ rhs where lhs is the response variable and rhs a
set of predictors.

data optional data frame containing the variables in the model formula.

subset optional vector specifying a subset of observations to be used.

na.action function which indicates what should happen when the data contain NAs.

k number of neighbours considered, defaults to 5.

... additional parameters.

Details

This is a wrapper to knn in order to be able to use k-NN in bagging and errorest.

Value

An object of class ipredknn. See predict.ipredknn.
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Examples

library("mlbench")
learn <- as.data.frame(mlbench.twonorm(300))

mypredict.knn <- function(object, newdata)
predict.ipredknn(object, newdata, type="class")

errorest(classes ~., data=learn, model=ipredknn,
predict=mypredict.knn)

kfoldcv Subsamples for k-fold Cross-Validation

Description

Computes feasible sample sizes for the k groups in k-fold cv if N/k is not an integer.

Usage

kfoldcv(k, N, nlevel=NULL)

Arguments

k number of groups.

N total sample size.

nlevel a vector of sample sizes for stratified sampling.

Details

If N/k is not an integer, k-fold cv is not unique. Determine meaningful sample sizes.

Value

A vector of length k.

Examples

# 10-fold CV with N = 91

kfoldcv(10, 91)
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mypredict.lm Predictions Based on Linear Models

Description

Function to predict a vector of full length (number of observations), where predictions according to
missing explanatory values are replaced by NA.

Usage

mypredict.lm(object, newdata)

Arguments

object an object of class lm.

newdata matrix or data frame to be predicted according to object.

Value

Vector of predicted values.

Note

predict.lm delivers a vector of reduced length, i.e. rows where explanatory variables are miss-
ing are omitted. The full length of the predicted observation vector is necessary in the indirect
classification approach (predict.inclass).

predict.classbagg Predictions from Bagging Trees

Description

Predict the outcome of a new observation based on multiple trees.

Usage

## S3 method for class 'classbagg'
predict(object, newdata=NULL, type=c("class", "prob"),

aggregation=c("majority", "average", "weighted"), ...)
## S3 method for class 'regbagg'
predict(object, newdata=NULL, aggregation=c("average",

"weighted"), ...)
## S3 method for class 'survbagg'
predict(object, newdata=NULL,...)
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Arguments

object object of classes classbagg, regbagg or survbagg.

newdata a data frame of new observations.

type character string denoting the type of predicted value returned for classification
trees. Either class (predicted classes are returned) or prob (estimated class
probabilities are returned).

aggregation character string specifying how to aggregate, see below.

... additional arguments, currently not passed to any function.

Details

There are (at least) three different ways to aggregate the predictions of bagging classification
trees. Most famous is class majority voting (aggregation="majority") where the most frequent
class is returned. The second way is choosing the class with maximal averaged class probability
(aggregation="average"). The third method is based on the "aggregated learning sample", in-
troduced by Hothorn et al. (2003) for survival trees. The prediction of a new observation is the
majority class, mean or Kaplan-Meier curve of all observations from the learning sample identi-
fied by the nbagg leaves containing the new observation. For regression trees, only averaged or
weighted predictions are possible.

By default, the out-of-bag estimate is computed if newdata is NOT specified. Therefore, the pre-
dictions of predict(object) are "honest" in some way (this is not possible for combined models
via comb in bagging). If you like to compute the predictions for the learning sample itself, use
newdata to specify your data.

Value

The predicted class or estimated class probabilities are returned for classification trees. The pre-
dicted endpoint is returned in regression problems and the predicted Kaplan-Meier curve is returned
for survival trees.

References

Leo Breiman (1996), Bagging Predictors. Machine Learning 24(2), 123–140.

Torsten Hothorn, Berthold Lausen, Axel Benner and Martin Radespiel-Troeger (2004), Bagging
Survival Trees. Statistics in Medicine, 23(1), 77–91.

Examples

data("Ionosphere", package = "mlbench")
Ionosphere$V2 <- NULL # constant within groups

# nbagg = 10 for performance reasons here
mod <- bagging(Class ~ ., data=Ionosphere)

# out-of-bag estimate

mean(predict(mod) != Ionosphere$Class)
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# predictions for the first 10 observations

predict(mod, newdata=Ionosphere[1:10,])

predict(mod, newdata=Ionosphere[1:10,], type="prob")

predict.inbagg Predictions from an Inbagg Object

Description

Predicts the class membership of new observations through indirect bagging.

Usage

## S3 method for class 'inbagg'
predict(object, newdata, ...)

Arguments

object object of class inbagg, see inbagg.

newdata data frame to be classified.

... additional argumends corresponding to the predictive models.

Details

Predictions of class memberships are calculated. i.e. values of the intermediate variables are pre-
dicted following pFUN and classified following cFUN, see inbagg.

Value

The vector of predicted classes is returned.

References

David J. Hand, Hua Gui Li, Niall M. Adams (2001), Supervised classification with structured class
definitions. Computational Statistics & Data Analysis 36, 209–225.

Andrea Peters, Berthold Lausen, Georg Michelson and Olaf Gefeller (2003), Diagnosis of glaucoma
by indirect classifiers. Methods of Information in Medicine 1, 99-103.

See Also

inbagg
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Examples

library("MASS")
library("rpart")
y <- as.factor(sample(1:2, 100, replace = TRUE))
W <- mvrnorm(n = 200, mu = rep(0, 3), Sigma = diag(3))
X <- mvrnorm(n = 200, mu = rep(2, 3), Sigma = diag(3))
colnames(W) <- c("w1", "w2", "w3")
colnames(X) <- c("x1", "x2", "x3")
DATA <- data.frame(y, W, X)

pFUN <- list(list(formula = w1~x1+x2, model = lm),
list(model = rpart))

RES <- inbagg(y~w1+w2+w3~x1+x2+x3, data = DATA, pFUN = pFUN)
predict(RES, newdata = X)

predict.inclass Predictions from an Inclass Object

Description

Predicts the class membership of new observations through indirect classification.

Usage

## S3 method for class 'inclass'
predict(object, newdata, ...)

Arguments

object object of class inclass, see inclass.
newdata data frame to be classified.
... additional arguments corresponding to the predictive models specified in inclass.

Details

Predictions of class memberships are calculated. i.e. values of the intermediate variables are pre-
dicted and classified following cFUN, see inclass.

Value

The vector of predicted classes is returned.

References

David J. Hand, Hua Gui Li, Niall M. Adams (2001), Supervised classification with structured class
definitions. Computational Statistics & Data Analysis 36, 209–225.

Andrea Peters, Berthold Lausen, Georg Michelson and Olaf Gefeller (2003), Diagnosis of glaucoma
by indirect classifiers. Methods of Information in Medicine 1, 99-103.
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See Also

inclass

Examples

## Not run:
# Simulation model, classification rule following Hand et al. (2001)

theta90 <- varset(N = 1000, sigma = 0.1, theta = 90, threshold = 0)

dataset <- as.data.frame(cbind(theta90$explanatory, theta90$intermediate))
names(dataset) <- c(colnames(theta90$explanatory),
colnames(theta90$intermediate))

classify <- function(Y, threshold = 0) {
Y <- Y[,c("y1", "y2")]
z <- (Y > threshold)
resp <- as.factor(ifelse((z[,1] + z[,2]) > 1, 1, 0))
return(resp)

}

formula <- response~y1+y2~x1+x2

fit <- inclass(formula, data = dataset, pFUN = list(list(model = lm)),
cFUN = classify)

predict(object = fit, newdata = dataset)

data("Smoking", package = "ipred")

# explanatory variables are: TarY, NicY, COY, Sex, Age
# intermediate variables are: TVPS, BPNL, COHB
# reponse is defined by:

classify <- function(data){
data <- data[,c("TVPS", "BPNL", "COHB")]
res <- t(t(data) > c(4438, 232.5, 58))
res <- as.factor(ifelse(apply(res, 1, sum) > 2, 1, 0))
res

}

response <- classify(Smoking[ ,c("TVPS", "BPNL", "COHB")])
smoking <- cbind(Smoking, response)

formula <- response~TVPS+BPNL+COHB~TarY+NicY+COY+Sex+Age

fit <- inclass(formula, data = smoking,
pFUN = list(list(model = lm)), cFUN = classify)

predict(object = fit, newdata = smoking)
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## End(Not run)

data("GlaucomaMVF", package = "ipred")
library("rpart")
glaucoma <- GlaucomaMVF[,(names(GlaucomaMVF) != "tension")]
# explanatory variables are derived by laser scanning image and intra occular pressure
# intermediate variables are: clv, cs, lora
# response is defined by

classify <- function (data) {
attach(data)
res <- ifelse((!is.na(clv) & !is.na(lora) & clv >= 5.1 & lora >=

49.23372) | (!is.na(clv) & !is.na(lora) & !is.na(cs) &
clv < 5.1 & lora >= 58.55409 & cs < 1.405) | (is.na(clv) &
!is.na(lora) & !is.na(cs) & lora >= 58.55409 & cs < 1.405) |
(!is.na(clv) & is.na(lora) & cs < 1.405), 0, 1)

detach(data)
factor (res, labels = c("glaucoma", "normal"))

}

fit <- inclass(Class~clv+lora+cs~., data = glaucoma,
pFUN = list(list(model = rpart)), cFUN = classify)

data("GlaucomaM", package = "TH.data")
predict(object = fit, newdata = GlaucomaM)

predict.ipredknn Predictions from k-Nearest Neighbors

Description

Predict the class of a new observation based on k-NN.

Usage

## S3 method for class 'ipredknn'
predict(object, newdata, type=c("prob", "class"), ...)

Arguments

object object of class ipredknn.

newdata a data frame of new observations.

type return either the predicted class or the the proportion of the votes for the winning
class.

... additional arguments.
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Details

This function is a method for the generic function predict for class ipredknn. For the details see
knn.

Value

Either the predicted class or the the proportion of the votes for the winning class.

predict.slda Predictions from Stabilised Linear Discriminant Analysis

Description

Predict the class of a new observation based on stabilised LDA.

Usage

## S3 method for class 'slda'
predict(object, newdata, ...)

Arguments

object object of class slda.

newdata a data frame of new observations.

... additional arguments passed to predict.lda.

Details

This function is a method for the generic function predict for class slda. For the details see
predict.lda.

Value

A list with components

class the predicted class (a factor).

posterior posterior probabilities for the classes.

x the scores of test cases.
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print.classbagg Print Method for Bagging Trees

Description

Print objects returned by bagging in nice layout.

Usage

## S3 method for class 'classbagg'
print(x, digits, ...)

Arguments

x object returned by bagging.

digits how many digits should be printed.

... further arguments to be passed to or from methods.

Value

none

print.cvclass Print Method for Error Rate Estimators

Description

Print objects returned by errorest in nice layout.

Usage

## S3 method for class 'cvclass'
print(x, digits=4, ...)

Arguments

x an object returned by errorest.

digits how many digits should be printed.

... further arguments to be passed to or from methods.

Value

none
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print.inbagg Print Method for Inbagg Object

Description

Print object of class inbagg in nice layout.

Usage

## S3 method for class 'inbagg'
print(x, ...)

Arguments

x object of class inbagg.

... additional arguments.

Details

An object of class inbagg is printed. Information about number and names of the intermediate
variables, and the number of drawn bootstrap samples is given.

print.inclass Print Method for Inclass Object

Description

Print object of class inclass in nice layout.

Usage

## S3 method for class 'inclass'
print(x, ...)

Arguments

x object of class inclass.

... additional arguments.

Details

An object of class inclass is printed. Information about number and names of the intermediate
variables, the used modelling technique and the number of drawn bootstrap samples is given.
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prune.classbagg Pruning for Bagging

Description

Prune each of the trees returned by bagging.

Usage

## S3 method for class 'classbagg'
prune(tree, cp=0.01,...)

Arguments

tree an object returned by bagging (calling this tree is needed by the generic func-
tion prune in package rpart).

cp complexity parameter, see prune.rpart.

... additional arguments to prune.rpart.

Details

By default, bagging grows classification trees of maximal size. One may want to prune each tree,
however, it is not clear whether or not this may decrease prediction error.

Value

An object of the same class as tree with the trees pruned.

Examples

data("Glass", package = "mlbench")
library("rpart")

mod <- bagging(Type ~ ., data=Glass, nbagg=10, coob=TRUE)
pmod <- prune(mod)
print(pmod)
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rsurv Simulate Survival Data

Description

Simulation Setup for Survival Data.

Usage

rsurv(N, model=c("A", "B", "C", "D", "tree"), gamma=NULL, fact=1, pnon=10,
gethaz=FALSE)

Arguments

N number of observations.

model type of model.

gamma simulate censoring time as runif(N, 0, gamma). Defaults to NULL (no censoring).

fact scale parameter for model=tree.

pnon number of additional non-informative variables for the tree model.

gethaz logical, indicating wheather the hazard rate for each observation should be re-
turned.

Details

Simulation setup similar to configurations used in LeBlanc and Crowley (1992) or Keles and Segal
(2002) as well as a tree model used in Hothorn et al. (2004). See Hothorn et al. (2004) for the
details.

Value

A data frame with elements time, cens, X1 ... X5. If pnon > 0, additional noninformative covariables
are added. If gethaz=TRUE, the hazard attribute returns the hazard rates.

References

M. LeBlanc and J. Crowley (1992), Relative Risk Trees for Censored Survival Data. Biometrics 48,
411–425.

S. Keles and M. R. Segal (2002), Residual-based tree-structured survival analysis. Statistics in
Medicine, 21, 313–326.

Torsten Hothorn, Berthold Lausen, Axel Benner and Martin Radespiel-Troeger (2004), Bagging
Survival Trees. Statistics in Medicine, 23(1), 77–91.
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Examples

library("survival")
# 3*X1 + X2
simdat <- rsurv(500, model="C")
coxph(Surv(time, cens) ~ ., data=simdat)

sbrier Model Fit for Survival Data

Description

Model fit for survival data: the integrated Brier score for censored observations.

Usage

sbrier(obj, pred, btime= range(obj[,1]))

Arguments

obj an object of class Surv.

pred predicted values. Either a probability or a list of survfit objects.

btime numeric vector of times, the integrated Brier score is computed if this is of
length > 1. The Brier score at btime is returned otherwise.

Details

There is no obvious criterion of model fit for censored data. The Brier score for censoring as well
as it’s integrated version were suggested by Graf et al (1999).

The integrated Brier score is always computed over a subset of the interval given by the range of
the time slot of the survival object obj.

Value

The (integrated) Brier score with attribute time is returned.

References

Erika Graf, Claudia Schmoor, Willi Sauerbrei and Martin Schumacher (1999), Assessment and
comparison of prognostic classification schemes for survival data. Statistics in Medicine 18(17-18),
2529–2545.

See Also

More measures for the validation of predicted surival probabilities are implemented in package pec.
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Examples

library("survival")
data("DLBCL", package = "ipred")
smod <- Surv(DLBCL$time, DLBCL$cens)

KM <- survfit(smod ~ 1)
# integrated Brier score up to max(DLBCL$time)
sbrier(smod, KM)

# integrated Brier score up to time=50
sbrier(smod, KM, btime=c(0, 50))

# Brier score for time=50
sbrier(smod, KM, btime=50)

# a "real" model: one single survival tree with Intern. Prognostic Index
# and mean gene expression in the first cluster as predictors
mod <- bagging(Surv(time, cens) ~ MGEc.1 + IPI, data=DLBCL, nbagg=1)

# this is a list of survfit objects (==KM-curves), one for each observation
# in DLBCL
pred <- predict(mod, newdata=DLBCL)

# integrated Brier score up to max(time)
sbrier(smod, pred)

# Brier score at time=50
sbrier(smod, pred, btime=50)
# artificial examples and illustrations

cleans <- function(x) { attr(x, "time") <- NULL; names(x) <- NULL; x }

n <- 100
time <- rpois(n, 20)
cens <- rep(1, n)

# checks, Graf et al. page 2536, no censoring at all!
# no information: \pi(t) = 0.5

a <- sbrier(Surv(time, cens), rep(0.5, n), time[50])
stopifnot(all.equal(cleans(a),0.25))

# some information: \pi(t) = S(t)

n <- 100
time <- 1:100
mod <- survfit(Surv(time, cens) ~ 1)
a <- sbrier(Surv(time, cens), rep(list(mod), n))
mymin <- mod$surv * (1 - mod$surv)
cleans(a)
sum(mymin)/diff(range(time))
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# independent of ordering
rand <- sample(1:100)
b <- sbrier(Surv(time, cens)[rand], rep(list(mod), n)[rand])
stopifnot(all.equal(cleans(a), cleans(b)))

# 2 groups at different risk

time <- c(1:10, 21:30)
strata <- c(rep(1, 10), rep(2, 10))
cens <- rep(1, length(time))

# no information about the groups

a <- sbrier(Surv(time, cens), survfit(Surv(time, cens) ~ 1))
b <- sbrier(Surv(time, cens), rep(list(survfit(Surv(time, cens) ~1)), 20))
stopifnot(all.equal(a, b))

# risk groups known

mod <- survfit(Surv(time, cens) ~ strata)
b <- sbrier(Surv(time, cens), c(rep(list(mod[1]), 10), rep(list(mod[2]), 10)))
stopifnot(a > b)

### GBSG2 data
data("GBSG2", package = "TH.data")

thsum <- function(x) {
ret <- c(median(x), quantile(x, 0.25), quantile(x,0.75))
names(ret)[1] <- "Median"
ret

}

t(apply(GBSG2[,c("age", "tsize", "pnodes",
"progrec", "estrec")], 2, thsum))

table(GBSG2$menostat)
table(GBSG2$tgrade)
table(GBSG2$horTh)

# pooled Kaplan-Meier

mod <- survfit(Surv(time, cens) ~ 1, data=GBSG2)
# integrated Brier score
sbrier(Surv(GBSG2$time, GBSG2$cens), mod)
# Brier score at 5 years
sbrier(Surv(GBSG2$time, GBSG2$cens), mod, btime=1825)

# Nottingham prognostic index

GBSG2 <- GBSG2[order(GBSG2$time),]
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NPI <- 0.2*GBSG2$tsize/10 + 1 + as.integer(GBSG2$tgrade)
NPI[NPI < 3.4] <- 1
NPI[NPI >= 3.4 & NPI <=5.4] <- 2
NPI[NPI > 5.4] <- 3

mod <- survfit(Surv(time, cens) ~ NPI, data=GBSG2)
plot(mod)

pred <- c()
survs <- c()
for (i in sort(unique(NPI)))

survs <- c(survs, getsurv(mod[i], 1825))

for (i in 1:nrow(GBSG2))
pred <- c(pred, survs[NPI[i]])

# Brier score of NPI at t=5 years
sbrier(Surv(GBSG2$time, GBSG2$cens), pred, btime=1825)

slda Stabilised Linear Discriminant Analysis

Description

Linear discriminant analysis based on left-spherically distributed linear scores.

Usage

## S3 method for class 'formula'
slda(formula, data, subset, na.action=na.rpart, ...)
## S3 method for class 'factor'
slda(y, X, q=NULL, ...)

Arguments

y the response variable: a factor vector of class labels.

X a data frame of predictor variables.

q the number of positive eigenvalues the scores are derived from, see below.

formula a formula of the form lhs ~ rhs where lhs is the response variable and rhs a
set of predictors.

data optional data frame containing the variables in the model formula.

subset optional vector specifying a subset of observations to be used.

na.action function which indicates what should happen when the data contain NAs. De-
faults to na.rpart.

... additional parameters passed to lda.
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Details

This function implements the LDA for q-dimensional linear scores of the original p predictors
derived from the PCq rule by Laeuter et al. (1998). Based on the product sum matrix

W = (X − X̄)⊤(X − X̄)

the eigenvalue problem WD = diag(W )DL is solved. The first q columns Dq of D are used as a
weight matrix for the original p predictors: XDq . By default, q is the number of eigenvalues greater
one. The q-dimensional linear scores are left-spherically distributed and are used as predictors for
a classical LDA.

This form of reduction of the dimensionality was developed for discriminant analysis problems by
Laeuter (1992) and was used for multivariate tests by Laeuter et al. (1998), Kropf (2000) gives an
overview. For details on left-spherically distributions see Fang and Zhang (1990).

Value

An object of class slda, a list with components

scores the weight matrix.

mylda an object of class lda.

References

Fang Kai-Tai and Zhang Yao-Ting (1990), Generalized Multivariate Analysis, Springer, Berlin.

Siegfried Kropf (2000), Hochdimensionale multivariate Verfahren in der medizinischen Statistik,
Shaker Verlag, Aachen (in german).

Juergen Laeuter (1992), Stabile multivariate Verfahren, Akademie Verlag, Berlin (in german).

Juergen Laeuter, Ekkehard Glimm and Siegfried Kropf (1998), Multivariate Tests Based on Left-
Spherically Distributed Linear Scores. The Annals of Statistics, 26(5) 1972–1988.

See Also

predict.slda

Examples

library("mlbench")
library("MASS")
learn <- as.data.frame(mlbench.twonorm(100))
test <- as.data.frame(mlbench.twonorm(1000))

mlda <- lda(classes ~ ., data=learn)
mslda <- slda(classes ~ ., data=learn)

print(mean(predict(mlda, newdata=test)$class != test$classes))
print(mean(predict(mslda, newdata=test)$class != test$classes))
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Smoking Smoking Styles

Description

The Smoking data frame has 55 rows and 9 columns.

Usage

data("Smoking")

Format

This data frame contains the following columns:

NR numeric, patient number.

Sex factor, sex of patient.

Age factor, age group of patient, grouping consisting of those in their twenties, those in their thirties
and so on.

TarY numeric, tar yields of the cigarettes.

NicY numeric, nicotine yields of the cigarettes.

COY numeric, carbon monoxide (CO) yield of the cigarettes.

TVPS numeric, total volume puffed smoke.

BPNL numeric, blood plasma nicotine level.

COHB numeric, carboxyhaemoglobin level, i.e. amount of CO absorbed by the blood stream.

Details

The data describes different smoking habits of probands.

Source

Hand and Taylor (1987), Study F Smoking Styles.

References

D.J. Hand and C.C. Taylor (1987), Multivariate analysis of variance and repeated measures. Lon-
don: Chapman & Hall, pp. 167–181.
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summary.classbagg Summarising Bagging

Description

summary method for objects returned by bagging.

Usage

## S3 method for class 'classbagg'
summary(object, ...)

Arguments

object object returned by bagging.

... further arguments to be passed to or from methods.

Details

A representation of all trees in the object is printed.

Value

none

summary.inbagg Summarising Inbagg

Description

Summary of inbagg is returned.

Usage

## S3 method for class 'inbagg'
summary(object, ...)

Arguments

object an object of class inbagg.

... additional arguments.

Details

A representation of an indirect bagging model (the intermediates variables, the number of bootstrap
samples, the trees) is printed.
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Value

none

See Also

print.summary.inbagg

summary.inclass Summarising Inclass

Description

Summary of inclass is returned.

Usage

## S3 method for class 'inclass'
summary(object, ...)

Arguments

object an object of class inclass.

... additional arguments.

Details

A representation of an indirect classification model (the intermediates variables, which modelling
technique is used and the prediction model) is printed.

Value

none

See Also

print.summary.inclass
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varset Simulation Model

Description

Three sets of variables are calculated: explanatory, intermediate and response variables.

Usage

varset(N, sigma=0.1, theta=90, threshold=0, u=1:3)

Arguments

N number of simulated observations.

sigma standard deviation of the error term.

theta angle between two u vectors.

threshold cutpoint for classifying to 0 or 1.

u starting values.

Details

For each observation values of two explanatory variables x = (x1, x2)
⊤ and of two responses

y = (y1, y2)
⊤ are simulated, following the formula:

y = U ∗ x+ e = (
u⊤
1

u⊤
2

) ∗ x+ e

where x is the evaluation of as standard normal random variable and e is generated by a normal
variable with standard deviation sigma. U is a 2*2 Matrix, where

u1 = (
u1,1

u1,2
), u2 = (

u2,1

u2,2
), ||u1|| = ||u2|| = 1,

i.e. a matrix of two normalised vectors.

Value

A list containing the following arguments

explanatory N*2 matrix of 2 explanatory variables.

intermediate N*2 matrix of 2 intermediate variables.

response response vectors with values 0 or 1.

References

David J. Hand, Hua Gui Li, Niall M. Adams (2001), Supervised classification with structured class
definitions. Computational Statistics & Data Analysis 36, 209–225.
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Examples

theta90 <- varset(N = 1000, sigma = 0.1, theta = 90, threshold = 0)
theta0 <- varset(N = 1000, sigma = 0.1, theta = 0, threshold = 0)
par(mfrow = c(1, 2))
plot(theta0$intermediate)
plot(theta90$intermediate)
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