
Package: modeltools (via r-universe)
September 13, 2024

Title Tools and Classes for Statistical Models

Date 2020-03-05

Version 0.2-23

Author Torsten Hothorn, Friedrich Leisch, Achim Zeileis

Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>

Description A collection of tools to deal with statistical models. The
functionality is experimental and the user interface is likely
to change in the future. The documentation is rather terse, but
packages `coin' and `party' have some working examples.
However, if you find the implemented ideas interesting we would
be very interested in a discussion of this proposal.
Contributions are more than welcome!

Depends stats, stats4

Imports methods

LazyLoad yes

License GPL-2

NeedsCompilation no

Date/Publication 2020-03-05 11:50:06 UTC

Repository https://thothorn.r-universe.dev

RemoteUrl https://github.com/cran/modeltools

RemoteRef HEAD

RemoteSha 89a7c7ed504ca7161a0c7f8f58597cf48e206b25

Contents
FormulaParts-class . 2
Generics . 2
info . 3
MEapply . 4
ModelEnv-class . 5
ModelEnvFormula . 6

1

2 Generics

ModelEnvFormula-class . 8
ModelEnvMatrix . 9
Predict . 10
StatModel-class . 11
StatModelCapabilities-class . 12

Index 13

FormulaParts-class Class "FormulaParts"

Description

A class describing the parts of a formula.

Objects from the Class

Objects can be created by calls of the form new("FormulaParts", ...).

Slots

formula: Object of class "list".

Methods

No methods defined with class "FormulaParts" in the signature.

Generics Generic Utility Functions

Description

A collection of standard generic functions for which other packages provide methods.

Usage

ICL(object, ...)
KLdiv(object, ...)
Lapply(object, FUN, ...)
clusters(object, newdata, ...)
getModel(object, ...)
parameters(object, ...)
posterior(object, newdata, ...)
prior(object, ...)
refit(object, newdata, ...)
relabel(object, by, ...)
ParseFormula(formula, data = list())

info 3

Arguments

object S4 classed object.

formula A model formula.

data An optional data frame.

FUN The function to be applied.

newdata Optional new data.

by Typically a character string specifying how to relabel the object.

... Some methods for these generic function may take additional, optional argu-
ments.

Details

ICL: Integrated Completed Likelihood criterion for model selection.

KLdiv: Kullback-Leibler divergence.

Lapply: S4 generic for lapply

clusters: Get cluster membership information from a model or compute it for new data.

getModel: Get single model from a collection of models.

parameters: Get parameters of a model (similar to but more general than coefficients).

posterior: Get posterior probabilities from a model or compute posteriors for new data.

prior: Get prior probabilities from a model.

refit: Refit a model (usually to obtain additional information that was not computed or stored during
the initial fitting process).

relabel: Relabel a model (usually to obtain a new permutation of labels in mixture models or cluster
objects).

Author(s)

Friedrich Leisch

info Get Information on Fitted Objects

Description

Returns descriptive information about fitted objects.

Usage

info(object, which, ...)
S4 method for signature 'ANY,missing'
info(object, which, ...)
infoCheck(object, which, ...)

4 MEapply

Arguments

object fitted object.

which which information to get. Use which="help" to list available information.

... passed to methods.

Details

Function info can be used to access slots of fitted objects in a portable way.

Function infoCheck returns a logical value that is TRUE if the requested information can be com-
puted from the object.

Author(s)

Friedrich Leisch

MEapply Apply functions to Data in Object of Class "ModelEnv"

Description

Apply a single function or a collection of functions to the data objects stored in a model environ-
ment.

Usage

S4 method for signature 'ModelEnv'
MEapply(object, FUN, clone = TRUE, ...)

Arguments

object Object of class "ModelEnv".

FUN Function or list of functions.

clone If TRUE, return a clone of the original object, if FALSE, modify the object itself.

... Passed on to FUN.

Examples

data("iris")
me <- ModelEnvFormula(Species+Petal.Width~.-1, data=iris,

subset=sample(1:150, 10))

me1 <- MEapply(me, FUN=list(designMatrix=scale,
response=function(x) sapply(x, as.numeric)))

me@get("designMatrix")
me1@get("designMatrix")

ModelEnv-class 5

ModelEnv-class Class "ModelEnv"

Description

A class for model environments.

Details

Objects of class ModelEnv basically consist of an environment for data storage as well as get and
set methods.

na.fail returns FALSE when at least one missing value occurs in object@env. na.pass returns
object unchanged and na.omit returns a copy of object with all missing values removed.

Objects from the Class

Objects can be created by calls of the form new("ModelEnv", ...).

Slots

env: Object of class "environment".

get: Object of class "function" for extracting objects from environment env.

set: Object of class "function" for setting object in environment env.

hooks: A list of hook collections.

Methods

clone signature(object = "ModelEnv"): copy an object.

dimension signature(object = "ModelEnv", which = "character"): get the dimension of an
object.

empty signature(object = "ModelEnv"): Return TRUE, if the model environment contains no
data.

has signature(object = "ModelEnv", which = "character"): check if an object which is avail-
able in env.

initialize signature(.Object = "ModelEnv"): setup new objects.

show signature(object = "ModelEnv"): show object.

subset signature(x = "ModelEnv"): extract subsets from an object.

na.pass na.action method for ModelEnv objects.

na.fail na.action method for ModelEnv objects.

na.omit na.action method for ModelEnv objects.

6 ModelEnvFormula

Examples

a new object
me <- new("ModelEnv")

the new model environment is empty
empty(me)

define a bivariate response variable
me@set("response", data.frame(y = rnorm(10), x = runif(10)))
me

now it is no longer empty
empty(me)

check if a response is available
has(me, "response")

the dimensions
dimension(me, "response")

extract the data
me@get("response")

df <- data.frame(x = rnorm(10), y = rnorm(10))

hook for set method:
mf <- ModelEnvFormula(y ~ x-1, data = df, setHook=list(designMatrix=scale))
mf@get("designMatrix")
mf@set(data=df[1:5,])
mf@get("designMatrix")

NA handling
df$x[1] <- NA
mf <- ModelEnvFormula(y ~ x, data = df, na.action = na.pass)
mf
na.omit(mf)

ModelEnvFormula Generate a model environment from a classical formula based inter-
face.

Description

A flexible implementation of the classical formula based interface.

Usage

ModelEnvFormula(formula, data = list(), subset = NULL,
na.action = NULL, frame = NULL,

ModelEnvFormula 7

enclos = sys.frame(sys.nframe()), other = list(),
designMatrix = TRUE, responseMatrix = TRUE,
setHook = NULL, ...)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model. If not found in
data, the variables are taken from frame, by default the environment from
which ModelEnvFormula is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NA’s.

frame an optional environment formula is evaluated in.

enclos specifies the enclosure passed to eval for evaluating the model frame. The
model frame is evaluated in envir = frame with enclos = enclos, see eval.

other an optional named list of additional formulae.

designMatrix a logical indicating whether the design matrix defined by the right hand side of
formula should be computed.

responseMatrix a logical indicating whether the design matrix defined by the left hand side of
formula should be computed.

setHook a list of functions to MEapply every time set is called on the object.

... additional arguments for be passed to function, for example contrast.arg to
model.matrix.

Details

This function is an attempt to provide a flexible infrastucture for the implementation of classical
formula based interfaces. The arguments formula, data, subset and na.action are well known
and are defined in the same way as in lm, for example.

ModelEnvFormula returns an object of class ModelEnvFormula-class - a high level object for
storing data improving upon the capabilities of data.frames.

Value

An object of class ModelEnvFormula-class.

Examples

the `usual' interface
data(iris)
mf <- ModelEnvFormula(Species ~ ., data = iris)
mf

extract data from the ModelEnv object
summary(mf@get("response"))
summary(mf@get("input"))

8 ModelEnvFormula-class

dim(mf@get("designMatrix"))

contrasts
mf <- ModelEnvFormula(Petal.Width ~ Species, data = iris,

contrasts.arg = list(Species = contr.treatment))
attr(mf@get("designMatrix"), "contrasts")
mf <- ModelEnvFormula(Petal.Width ~ Species, data = iris,

contrasts.arg = list(Species = contr.sum))
attr(mf@get("designMatrix"), "contrasts")

additional formulae
mf <- ModelEnvFormula(Petal.Width ~ Species, data = iris,

other = list(pl = ~ Petal.Length))
ls(mf@env)
identical(mf@get("pl")[[1]], iris[["Petal.Length"]])

ModelEnvFormula-class Class "ModelEnvFormula"

Description

A class for formula-based model environments.

Objects from the Class

Objects can be created by calls of the form new("ModelEnvFormula", ...).

Slots

env: Object of class "environment".

get: Object of class "function" for extracting objects from environment env.

set: Object of class "function" for setting object in environment env.

formula: Object of class "list".

hooks: A list of hook collections.

Extends

Class "ModelEnv", directly. Class "FormulaParts", directly.

Methods

No methods defined with class "ModelEnvFormula" in the signature.

ModelEnvMatrix 9

ModelEnvMatrix Generate a model environment from design and response matrix

Description

A simple model environment creator function working off matrices for input and response. This
is much simpler and more limited than formula-based environments, but faster and easier to use, if
only matrices are allowed as input.

Usage

ModelEnvMatrix(designMatrix=NULL, responseMatrix=NULL,
subset = NULL, na.action = NULL, other=list(), ...)

Arguments

designMatrix design matrix of input

responseMatrix matrix of responses

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NA’s.

other an optional named list of additional formulae.

... currently not used

Details

ModelEnvMatrix returns an object of class ModelEnv-class - a high level object for storing data
improving upon the capabilities of simple data matrices.

Funny things may happen if the inpiut and response matrices do not have distinct column names
and the data new data are supplied via the get and set slots.

Value

An object of class ModelEnv-class.

Examples

use Sepal measurements as input and Petal as response
data(iris)
me <- ModelEnvMatrix(iris[,1:2], iris[,3:4])
me

extract data from the ModelEnv object
dim(me@get("designMatrix"))
summary(me@get("responseMatrix"))

10 Predict

subsets and missing values
iris[1,1] <- NA
me <- ModelEnvMatrix(iris[,1:2], iris[,3:4], subset=1:5, na.action=na.omit)

First case is not complete, so me contains only cases 2:5
me
me@get("designMatrix")
me@get("responseMatrix")

use different cases
me@set(data=iris[10:20,])
me@get("designMatrix")

these two should be the same
stopifnot(all.equal(me@get("responseMatrix"), as.matrix(iris[10:20,3:4])))

Predict Model Predictions

Description

A function for predictions from the results of various model fitting functions.

Usage

Predict(object, ...)

Arguments

object a model object for which prediction is desired.

... additional arguments affecting the predictions produced.

Details

A somewhat improved version of predict for models fitted with objects of class StatModel-class.

Value

Should return a vector of the same type as the response variable specified for fitting object.

Examples

df <- data.frame(x = runif(10), y = rnorm(10))
mf <- dpp(linearModel, y ~ x, data = df)
Predict(fit(linearModel, mf))

StatModel-class 11

StatModel-class Class "StatModel"

Description

A class for unfitted statistical models.

Objects from the Class

Objects can be created by calls of the form new("StatModel", ...).

Slots

name: Object of class "character", the name of the model.

dpp: Object of class "function", a function for data preprocessing (usually formula-based).

fit: Object of class "function", a function for fitting the model to data.

predict: Object of class "function", a function for computing predictions.

capabilities: Object of class "StatModelCapabilities".

Methods

fit signature(model = "StatModel", data = "ModelEnv"): fit model to data.

Details

This is an attempt to provide unified infra-structure for unfitted statistical models. Basically, an un-
fitted model provides a function for data pre-processing (dpp, think of generating design matrices),
a function for fitting the specified model to data (fit), and a function for computing predictions
(predict).

Examples for such unfitted models are provided by linearModel and glinearModel which pro-
vide interfaces in the "StatModel" framework to lm.fit and glm.fit, respectively. The functions
return objects of S3 class "linearModel" (inheriting from "lm") and "glinearModel" (inherit-
ing from "glm"), respectively. Some methods for S3 generics such as predict, fitted, print
and model.matrix are provided to make use of the "StatModel" structure. (Similarly, survReg
provides an experimental interface to survreg.)

Examples

linear model example
df <- data.frame(x = runif(10), y = rnorm(10))
mf <- dpp(linearModel, y ~ x, data = df)
mylm <- fit(linearModel, mf)

equivalent
print(mylm)
lm(y ~ x, data = df)

12 StatModelCapabilities-class

predictions
Predict(mylm, newdata = data.frame(x = runif(10)))

StatModelCapabilities-class

Class "StatModelCapabilities"

Description

A class describing capabilities of a statistical model.

Objects from the Class

Objects can be created by calls of the form new("StatModelCapabilities", ...).

Slots

weights: Object of class "logical"

subset: Object of class "logical"

Methods

No methods defined with class "StatModelCapabilities" in the signature.

Index

∗ classes
FormulaParts-class, 2
ModelEnv-class, 5
ModelEnvFormula-class, 8
StatModel-class, 11
StatModelCapabilities-class, 12

∗ methods
Generics, 2
info, 3
MEapply, 4

∗ misc
ModelEnvFormula, 6
ModelEnvMatrix, 9
Predict, 10

clone (ModelEnv-class), 5
clone,ModelEnv-method (ModelEnv-class),

5
clusters (Generics), 2
coefficients, 3

dimension (ModelEnv-class), 5
dimension,ModelEnv,character-method

(ModelEnv-class), 5
dpp (StatModel-class), 11
dpp,StatModel-method (StatModel-class),

11

empty (ModelEnv-class), 5
empty,ModelEnv-method (ModelEnv-class),

5
environment, 5
eval, 7

fit (StatModel-class), 11
fit,StatModel,ModelEnv-method

(StatModel-class), 11
fitted.glinearModel (StatModel-class),

11
fitted.linearModel (StatModel-class), 11

fitted.survReg (StatModel-class), 11
FormulaParts-class, 2

Generics, 2
getModel (Generics), 2
glinearModel (StatModel-class), 11
glm.fit, 11

has (ModelEnv-class), 5
has,ModelEnv,character-method

(ModelEnv-class), 5

ICL (Generics), 2
info, 3
info,ANY,missing-method (info), 3
infoCheck (info), 3
initialize,ModelEnv-method

(ModelEnv-class), 5

KLdiv (Generics), 2

Lapply (Generics), 2
linearModel (StatModel-class), 11
lm, 7
lm.fit, 11
logLik.survReg (StatModel-class), 11

MEapply, 4, 7
MEapply,ModelEnv-method (MEapply), 4
model.matrix, 7
model.matrix.glinearModel

(StatModel-class), 11
model.matrix.linearModel

(StatModel-class), 11
ModelEnv-class, 5
ModelEnvFormula, 6
ModelEnvFormula-class, 8
ModelEnvMatrix, 9

na.action, 5
na.fail (ModelEnv-class), 5

13

14 INDEX

na.fail,ModelEnv-method
(ModelEnv-class), 5

na.omit (ModelEnv-class), 5
na.omit,ModelEnv-method

(ModelEnv-class), 5
na.pass (ModelEnv-class), 5
na.pass,ModelEnv-method

(ModelEnv-class), 5

parameters (Generics), 2
ParseFormula (Generics), 2
posterior (Generics), 2
Predict, 10
predict, 10
predict.glinearModel (StatModel-class),

11
predict.linearModel (StatModel-class),

11
print.glinearModel (StatModel-class), 11
print.linearModel (StatModel-class), 11
print.survReg (StatModel-class), 11
prior (Generics), 2

refit (Generics), 2
relabel (Generics), 2

show,ModelEnv-method (ModelEnv-class), 5
StatModel-class, 11
StatModelCapabilities-class, 12
subset (ModelEnv-class), 5
subset,ModelEnv-method

(ModelEnv-class), 5
survReg (StatModel-class), 11
survreg, 11

weights.linearModel (StatModel-class),
11

weights.survReg (StatModel-class), 11

	FormulaParts-class
	Generics
	info
	MEapply
	ModelEnv-class
	ModelEnvFormula
	ModelEnvFormula-class
	ModelEnvMatrix
	Predict
	StatModel-class
	StatModelCapabilities-class
	Index

