Package: ipred 0.9-15

ipred: Improved Predictors

Improved predictive models by indirect classification and bagging for classification, regression and survival problems as well as resampling based estimators of prediction error.

Authors:Andrea Peters [aut], Torsten Hothorn [aut, cre], Brian D. Ripley [ctb], Terry Therneau [ctb], Beth Atkinson [ctb]

ipred_0.9-15.tar.gz
ipred_0.9-15.zip(r-4.5)ipred_0.9-15.zip(r-4.4)ipred_0.9-15.zip(r-4.3)
ipred_0.9-15.tgz(r-4.4-x86_64)ipred_0.9-15.tgz(r-4.4-arm64)ipred_0.9-15.tgz(r-4.3-x86_64)ipred_0.9-15.tgz(r-4.3-arm64)
ipred_0.9-15.tar.gz(r-4.5-noble)ipred_0.9-15.tar.gz(r-4.4-noble)
ipred_0.9-15.tgz(r-4.4-emscripten)ipred_0.9-15.tgz(r-4.3-emscripten)
ipred.pdf |ipred.html
ipred/json (API)
NEWS

# Install 'ipred' in R:
install.packages('ipred', repos = c('https://thothorn.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

10.77 score 389 packages 3.2k scripts 154k downloads 29 mentions 17 exports 25 dependencies

Last updated 4 months agofrom:f93fd84a1d. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-win-x86_64OKNov 15 2024
R-4.5-linux-x86_64OKNov 15 2024
R-4.4-win-x86_64OKNov 15 2024
R-4.4-mac-x86_64OKNov 15 2024
R-4.4-mac-aarch64OKNov 15 2024
R-4.3-win-x86_64OKNov 15 2024
R-4.3-mac-x86_64OKNov 15 2024
R-4.3-mac-aarch64OKNov 15 2024

Exports:baggingbootestcontrol.errorestcverrorestgetsurvinbagginclassipredbaggipredknnkfoldcvmypredict.lmpredict.ipredknnrsurvsbriersldavarset

Dependencies:classclicodetoolsdata.tablediagramdigestfuturefuture.applyglobalsKernSmoothlatticelavalistenvMASSMatrixnnetnumDerivparallellyprodlimprogressrRcpprpartshapeSQUAREMsurvival

Some more or less useful examples for illustration.

Rendered fromipred-examples.Rnwusingutils::Sweaveon Nov 15 2024.

Last update: 2013-09-02
Started: 2013-09-02

Readme and manuals

Help Manual

Help pageTopics
Bagging Classification, Regression and Survival Treesbagging bagging.data.frame bagging.default ipredbagg ipredbagg.default ipredbagg.factor ipredbagg.integer ipredbagg.numeric ipredbagg.Surv
Bootstrap Error Rate Estimatorsbootest bootest.default bootest.factor bootest.integer bootest.numeric bootest.Surv
Control Error Rate Estimatorscontrol.errorest
Cross-validated Error Rate Estimators.cv cv.default cv.factor cv.integer cv.numeric cv.Surv
Diffuse Large B-Cell LymphomaDLBCL
Detection of muscular dystrophy carriers.dystrophy
Estimators of Prediction Errorerrorest errorest.data.frame errorest.default
Glaucoma DatabaseGlaucomaMVF
Indirect Bagginginbagg inbagg.data.frame inbagg.default
Indirect Classificationinclass inclass.data.frame inclass.default
k-Nearest Neighbour Classificationipredknn
Subsamples for k-fold Cross-Validationkfoldcv
Predictions Based on Linear Modelsmypredict.lm
Predictions from Bagging Treespredict.classbagg predict.regbagg predict.survbagg
Predictions from an Inbagg Objectpredict.inbagg
Predictions from an Inclass Objectpredict.inclass
Predictions from k-Nearest Neighborspredict.ipredknn
Predictions from Stabilised Linear Discriminant Analysispredict.slda
Print Method for Bagging Treesprint print.classbagg print.regbagg print.survbagg
Print Method for Error Rate Estimatorsprint.bootestclass print.bootestreg print.bootestsurv print.cvclass print.cvreg print.cvsurv
Print Method for Inbagg Objectprint.inbagg
Print Method for Inclass Objectprint.inclass
Pruning for Baggingprune.classbagg prune.regbagg prune.survbagg
Simulate Survival Datarsurv
Model Fit for Survival Datasbrier
Stabilised Linear Discriminant Analysisslda slda.default slda.factor slda.formula
Smoking StylesSmoking
Summarising Baggingprint.summary.bagging summary.classbagg summary.regbagg summary.survbagg
Summarising Inbaggprint.summary.inbagg summary.inbagg
Summarising Inclassprint.summary.inclass summary.inclass
Simulation Modelvarset